BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 20219824)

  • 21. Proline hydroxylation and gene expression.
    Kaelin WG
    Annu Rev Biochem; 2005; 74():115-28. PubMed ID: 15952883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood and bones: osteoblastic HIF signaling regulates erythropoiesis.
    Wu C; Rankin EB; Giaccia AJ
    Cell Cycle; 2012 Jun; 11(12):2221-2. PubMed ID: 22627672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells.
    Katagiri N; Hitomi H; Mae SI; Kotaka M; Lei L; Yamamoto T; Nishiyama A; Osafune K
    Sci Rep; 2021 Feb; 11(1):3936. PubMed ID: 33594180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erythropoietin gene expression in renal carcinoma is considerably more frequent than paraneoplastic polycythemia.
    Wiesener MS; Münchenhagen P; Gläser M; Sobottka BA; Knaup KX; Jozefowski K; Jürgensen JS; Roigas J; Warnecke C; Gröne HJ; Maxwell PH; Willam C; Eckardt KU
    Int J Cancer; 2007 Dec; 121(11):2434-42. PubMed ID: 17640059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel biological function of soluble biglycan: Induction of erythropoietin production and polycythemia.
    Frey H; Moreth K; Hsieh LT; Zeng-Brouwers J; Rathkolb B; Fuchs H; Gailus-Durner V; Iozzo RV; de Angelis MH; Schaefer L
    Glycoconj J; 2017 Jun; 34(3):393-404. PubMed ID: 27600268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development.
    Gerl K; Steppan D; Fuchs M; Wagner C; Willam C; Kurtz A; Kurt B
    Am J Pathol; 2017 Jul; 187(7):1496-1511. PubMed ID: 28527294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TP0463518, a novel inhibitor for hypoxia-inducible factor prolyl hydroxylases, increases erythropoietin in rodents and monkeys with a good pharmacokinetics-pharmacodynamics correlation.
    Kato S; Takayama N; Takano H; Koretsune H; Koizumi C; Kunioka EI; Uchida S; Takahashi T; Yamamoto K
    Eur J Pharmacol; 2018 Nov; 838():138-144. PubMed ID: 30179610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia.
    Ladroue C; Hoogewijs D; Gad S; Carcenac R; Storti F; Barrois M; Gimenez-Roqueplo AP; Leporrier M; Casadevall N; Hermine O; Kiladjian JJ; Baruchel A; Fakhoury F; Bressac-de Paillerets B; Feunteun J; Mazure N; Pouysségur J; Wenger RH; Richard S; Gardie B
    Haematologica; 2012 Jan; 97(1):9-14. PubMed ID: 21933857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels.
    Masson N; Ratcliffe PJ
    J Cell Sci; 2003 Aug; 116(Pt 15):3041-9. PubMed ID: 12829734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Congenital erythrocytosis.
    Mallik N; Das R; Malhotra P; Sharma P
    Eur J Haematol; 2021 Jul; 107(1):29-37. PubMed ID: 33840141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia and the HIF system in kidney disease.
    Nangaku M; Eckardt KU
    J Mol Med (Berl); 2007 Dec; 85(12):1325-30. PubMed ID: 18026918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia.
    Tsui AK; Marsden PA; Mazer CD; Sled JG; Lee KM; Henkelman RM; Cahill LS; Zhou YQ; Chan N; Liu E; Hare GM
    Am J Physiol Regul Integr Comp Physiol; 2014 Jul; 307(1):R13-25. PubMed ID: 24760996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases.
    Chowdhury R; McDonough MA; Mecinović J; Loenarz C; Flashman E; Hewitson KS; Domene C; Schofield CJ
    Structure; 2009 Jul; 17(7):981-9. PubMed ID: 19604478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements.
    Hirano I; Suzuki N; Yamazaki S; Sekine H; Minegishi N; Shimizu R; Yamamoto M
    Mol Cell Biol; 2017 Feb; 37(4):. PubMed ID: 27920250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys.
    Broeker KAE; Fuchs MAA; Schrankl J; Lehrmann C; Schley G; Todorov VT; Hugo C; Wagner C; Kurtz A
    J Physiol; 2022 Feb; 600(3):671-694. PubMed ID: 34863041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics.
    Kular D; Macdougall IC
    Pediatr Nephrol; 2019 Mar; 34(3):365-378. PubMed ID: 29569190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery and Preclinical Characterization of GSK1278863 (Daprodustat), a Small Molecule Hypoxia Inducible Factor-Prolyl Hydroxylase Inhibitor for Anemia.
    Ariazi JL; Duffy KJ; Adams DF; Fitch DM; Luo L; Pappalardi M; Biju M; DiFilippo EH; Shaw T; Wiggall K; Erickson-Miller C
    J Pharmacol Exp Ther; 2017 Dec; 363(3):336-347. PubMed ID: 28928122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of erythropoiesis by hypoxia inducible factors (HIFs).
    Kirito K
    Rinsho Ketsueki; 2011 Jun; 52(6):368-75. PubMed ID: 21737989
    [No Abstract]   [Full Text] [Related]  

  • 39. Two new mutations in the HIF2A gene associated with erythrocytosis.
    Percy MJ; Chung YJ; Harrison C; Mercieca J; Hoffbrand AV; Dinardo CL; Santos PC; Fonseca GH; Gualandro SF; Pereira AC; Lappin TR; McMullin MF; Lee FS
    Am J Hematol; 2012 Apr; 87(4):439-42. PubMed ID: 22367913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenesis of renal anemia.
    Nangaku M; Eckardt KU
    Semin Nephrol; 2006 Jul; 26(4):261-8. PubMed ID: 16949463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.