These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 20219886)
21. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Funk WC; Blouin MS; Corn PS; Maxell BA; Pilliod DS; Amish S; Allendorf FW Mol Ecol; 2005 Feb; 14(2):483-96. PubMed ID: 15660939 [TBL] [Abstract][Full Text] [Related]
22. Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Gomez-Uchida D; Knight TW; Ruzzante DE Mol Ecol; 2009 Dec; 18(23):4854-69. PubMed ID: 19878451 [TBL] [Abstract][Full Text] [Related]
23. Nonequilibrium conditions following landscape rearrangement: the relative contribution of past and current hydrological landscapes on the genetic structure of a stream-dwelling fish. Jocelyn P; Knight TW; Ferguson MM Mol Ecol; 2005 Apr; 14(5):1321-31. PubMed ID: 15813773 [TBL] [Abstract][Full Text] [Related]
24. Population differentiation in perch Perca fluviatilis: environmental effects on gene flow? Bergek S; Sundblad G; Björklund M J Fish Biol; 2010 Apr; 76(5):1159-72. PubMed ID: 20409168 [TBL] [Abstract][Full Text] [Related]
25. The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations. Worthington Wilmer J; Elkin C; Wilcox C; Murray L; Niejalke D; Possingham H Mol Ecol; 2008 Aug; 17(16):3733-51. PubMed ID: 18643884 [TBL] [Abstract][Full Text] [Related]
26. Tug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex-biased dispersal paradigm reconsidered. Lecomte N; Gauthier G; Giroux JF; Milot E; Bernatchez L Mol Ecol; 2009 Feb; 18(4):593-602. PubMed ID: 19207261 [TBL] [Abstract][Full Text] [Related]
27. Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Keyghobadi N; Roland J; Strobeck C Mol Ecol; 2005 Jun; 14(7):1897-909. PubMed ID: 15910314 [TBL] [Abstract][Full Text] [Related]
28. Development and characterization of 14 microsatellites for the eastern chipmunk, Tamias striatus. Vandal K; Houle C; Archambault A; Réale D; Garant D Mol Biol Rep; 2020 Aug; 47(8):6393-6397. PubMed ID: 32588189 [TBL] [Abstract][Full Text] [Related]
29. Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia's arid zone, the golden perch (Macquaria ambigua). Faulks LK; Gilligan DM; Beheregaray LB Mol Ecol; 2010 Nov; 19(21):4723-37. PubMed ID: 20887362 [TBL] [Abstract][Full Text] [Related]
30. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Savage WK; Fremier AK; Shaffer HB Mol Ecol; 2010 Aug; 19(16):3301-14. PubMed ID: 20701683 [TBL] [Abstract][Full Text] [Related]
31. Regional gene flow and population structure of the wind-dispersed plant species Hypochaeris radicata (Asteraceae) in an agricultural landscape. Mix C; Arens PF; Rengelink R; Smulders MJ; Van Groenendael JM; Ouborg NJ Mol Ecol; 2006 Jun; 15(7):1749-58. PubMed ID: 16689895 [TBL] [Abstract][Full Text] [Related]
32. Using a genetic network to parameterize a landscape resistance surface for fishers, Martes pennanti. Garroway CJ; Bowman J; Wilson PJ Mol Ecol; 2011 Oct; 20(19):3978-88. PubMed ID: 21883589 [TBL] [Abstract][Full Text] [Related]
33. Spatial genetic structure of a small rodent in a heterogeneous landscape. Gauffre B; Estoup A; Bretagnolle V; Cosson JF Mol Ecol; 2008 Nov; 17(21):4619-29. PubMed ID: 19140985 [TBL] [Abstract][Full Text] [Related]
34. Microsatellite analyses provide evidence of male-biased dispersal in the radiated tortoise Astrochelys radiata (Chelonia: Testudinidae). Paquette SR; Louis EE; Lapointe FJ J Hered; 2010; 101(4):403-12. PubMed ID: 20308081 [TBL] [Abstract][Full Text] [Related]
36. Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Neaves LE; Zenger KR; Prince RI; Eldridge MD; Cooper DW Mol Ecol; 2009 Aug; 18(16):3363-78. PubMed ID: 19659477 [TBL] [Abstract][Full Text] [Related]
37. Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Zalewski A; Piertney SB; Zalewska H; Lambin X Mol Ecol; 2009 Apr; 18(8):1601-15. PubMed ID: 19302354 [TBL] [Abstract][Full Text] [Related]
38. The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys (Rhinopithecus bieti) implies an anthropogenic genetic discontinuity. Liu Z; Ren B; Wu R; Zhao L; Hao Y; Wang B; Wei F; Long Y; Li M Mol Ecol; 2009 Sep; 18(18):3831-46. PubMed ID: 19732331 [TBL] [Abstract][Full Text] [Related]
39. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Trizio I; Crestanello B; Galbusera P; Wauters LA; Tosi G; Matthysen E; Hauffe HC Mol Ecol; 2005 Feb; 14(2):469-81. PubMed ID: 15660938 [TBL] [Abstract][Full Text] [Related]
40. Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Fedy BC; Martin K; Ritland C; Young J Mol Ecol; 2008 Apr; 17(8):1905-17. PubMed ID: 18363666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]