These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20219942)

  • 41. Checkpoint inhibition of origin firing prevents DNA topological stress.
    Morafraile EC; Hänni C; Allen G; Zeisner T; Clarke C; Johnson MC; Santos MM; Carroll L; Minchell NE; Baxter J; Banks P; Lydall D; Zegerman P
    Genes Dev; 2019 Nov; 33(21-22):1539-1554. PubMed ID: 31624083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases.
    De Piccoli G; Katou Y; Itoh T; Nakato R; Shirahige K; Labib K
    Mol Cell; 2012 Mar; 45(5):696-704. PubMed ID: 22325992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Abrogation of the Chk1-Pds1 checkpoint leads to tolerance of persistent single-strand breaks in Saccharomyces cerevisiae.
    Karumbati AS; Wilson TE
    Genetics; 2005 Apr; 169(4):1833-44. PubMed ID: 15687272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time to be versatile: regulation of the replication timing program in budding yeast.
    Yoshida K; Poveda A; Pasero P
    J Mol Biol; 2013 Nov; 425(23):4696-705. PubMed ID: 24076190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA replication. Genomic views of genome duplication.
    Stillman B
    Science; 2001 Dec; 294(5550):2301-4. PubMed ID: 11743187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recombinant expression and characterization of yeast Mrc1, a DNA replication checkpoint mediator.
    Li L; Zhang Z
    Prep Biochem Biotechnol; 2020; 50(2):198-203. PubMed ID: 31755848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of the RAM signaling network in cell cycle progression in Saccharomyces cerevisiae.
    Bogomolnaya LM; Pathak R; Guo J; Polymenis M
    Curr Genet; 2006 Jun; 49(6):384-92. PubMed ID: 16552603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping of early firing origins on a replication profile of budding yeast.
    Yabuki N; Terashima H; Kitada K
    Genes Cells; 2002 Aug; 7(8):781-9. PubMed ID: 12167157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Do replication forks control late origin firing in Saccharomyces cerevisiae?
    Ma E; Hyrien O; Goldar A
    Nucleic Acids Res; 2012 Mar; 40(5):2010-9. PubMed ID: 22086957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Replication fork rate and origin activation during the S phase of Saccharomyces cerevisiae.
    Rivin CJ; Fangman WL
    J Cell Biol; 1980 Apr; 85(1):108-15. PubMed ID: 6767729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exceptional origin activation revealed by comparative analysis in two laboratory yeast strains.
    Joshi I; Peng J; Alvino G; Kwan E; Feng W
    PLoS One; 2022; 17(2):e0263569. PubMed ID: 35157703
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell-to-cell variability and robustness in S-phase duration from genome replication kinetics.
    Zhang Q; Bassetti F; Gherardi M; Lagomarsino MC
    Nucleic Acids Res; 2017 Aug; 45(14):8190-8198. PubMed ID: 28854733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. dNTP pools determine fork progression and origin usage under replication stress.
    Poli J; Tsaponina O; Crabbé L; Keszthelyi A; Pantesco V; Chabes A; Lengronne A; Pasero P
    EMBO J; 2012 Feb; 31(4):883-94. PubMed ID: 22234185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm.
    Ayuda-Durán P; Devesa F; Gomes F; Sequeira-Mendes J; Avila-Zarza C; Gómez M; Calzada A
    Nucleic Acids Res; 2014 Jun; 42(11):7057-68. PubMed ID: 24753426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin Firing Regulations to Control Genome Replication Timing.
    Boos D; Ferreira P
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30845782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conservation of replication timing reveals global and local regulation of replication origin activity.
    Müller CA; Nieduszynski CA
    Genome Res; 2012 Oct; 22(10):1953-62. PubMed ID: 22767388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data.
    Luo H; Li J; Eshaghi M; Liu J; Karuturi RK
    BMC Bioinformatics; 2010 May; 11():247. PubMed ID: 20462459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway.
    Ciardo D; Goldar A; Marheineke K
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum?
    Barberis M; Spiesser TW; Klipp E
    Curr Genomics; 2010 May; 11(3):199-211. PubMed ID: 21037857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.