These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20219942)

  • 81. Profiling of DNA replication timing in unsynchronized cell populations.
    Azuara V
    Nat Protoc; 2006; 1(4):2171-7. PubMed ID: 17487209
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Protocol to isolate cells in four stages of S phase for high-resolution replication-timing sequencing.
    Whetstine JR; Van Rechem C
    STAR Protoc; 2022 Mar; 3(1):101209. PubMed ID: 35243385
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Microarray analysis of DNA replication timing.
    Karnani N; Taylor CM; Dutta A
    Methods Mol Biol; 2009; 556():191-203. PubMed ID: 19488880
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Characterization of the replication timing program of 6 human model cell lines.
    Hadjadj D; Denecker T; Maric C; Fauchereau F; Baldacci G; Cadoret JC
    Genom Data; 2016 Sep; 9():113-7. PubMed ID: 27508120
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm.
    Audit B; Baker A; Chen CL; Rappailles A; Guilbaud G; Julienne H; Goldar A; d'Aubenton-Carafa Y; Hyrien O; Thermes C; Arneodo A
    Nat Protoc; 2013 Jan; 8(1):98-110. PubMed ID: 23237832
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The S phase: Beginning, middle, and end: A perspective.
    Ford HL; Pardee AB
    J Cell Biochem; 1998; 72 Suppl 30-31(S30-31):1-7. PubMed ID: 29345824
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Efficient, quick and easy-to-use DNA replication timing analysis with START-R suite.
    Hadjadj D; Denecker T; Guérin E; Kim SJ; Fauchereau F; Baldacci G; Maric C; Cadoret JC
    NAR Genom Bioinform; 2020 Jun; 2(2):lqaa045. PubMed ID: 33575597
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Corrigendum: Replication timing is regulated by the number of MCMs loaded at origins.
    Das SP; Borrman T; Liu VW; Yang SC; Bechhoefer J; Rhind N
    Genome Res; 2016 Dec; 26(12):1761. PubMed ID: 27934699
    [No Abstract]   [Full Text] [Related]  

  • 89. Systematic identification of cell size regulators in budding yeast.
    Soifer I; Barkai N
    Mol Syst Biol; 2014 Nov; 10(11):761. PubMed ID: 25411401
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Checkpoint-independent scaling of the Saccharomyces cerevisiae DNA replication program.
    Gispan A; Carmi M; Barkai N
    BMC Biol; 2014 Oct; 12():79. PubMed ID: 25288172
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level.
    Roussou R; Metzler D; Padovani F; Thoma F; Schwarz R; Shraiman B; Schmoller KM; Osman C
    EMBO J; 2024 Aug; ():. PubMed ID: 39103491
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Loss of mitochondrial DNA is associated with reduced DNA content variability in
    Putnam CD
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38533353
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Context-dependent neocentromere activity in synthetic yeast chromosome
    Lauer S; Luo J; Lazar-Stefanita L; Zhang W; McCulloch LH; Fanfani V; Lobzaev E; Haase MAB; Easo N; Zhao Y; Yu F; Cai J; ; Bader JS; Stracquadanio G; Boeke JD
    Cell Genom; 2023 Nov; 3(11):100437. PubMed ID: 38020969
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors.
    Shrestha S; Minamino M; Chen ZA; Bouchoux C; Rappsilber J; Uhlmann F
    Chromosoma; 2023 Jun; 132(2):117-135. PubMed ID: 37166686
    [TBL] [Abstract][Full Text] [Related]  

  • 95. S Phase Duration Is Determined by Local Rate and Global Organization of Replication.
    Greenberg A; Simon I
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625446
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for MCM10 in replication timing regulation.
    Caballero M; Ge T; Rebelo AR; Seo S; Kim S; Brooks K; Zuccaro M; Kanagaraj R; Vershkov D; Kim D; Smogorzewska A; Smolka M; Benvenisty N; West SC; Egli D; Mace EM; Koren A
    Hum Mol Genet; 2022 Aug; 31(17):2899-2917. PubMed ID: 35394024
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Stimulation of adaptive gene amplification by origin firing under replication fork constraint.
    Whale AJ; King M; Hull RM; Krueger F; Houseley J
    Nucleic Acids Res; 2022 Jan; 50(2):915-936. PubMed ID: 35018465
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship.
    Briu LM; Maric C; Cadoret JC
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946274
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Histones on fire: the effect of Dun1 and Mrc1 on origin firing and replication of hyper-acetylated genomes.
    Gershon L; Kupiec M
    Curr Genet; 2021 Aug; 67(4):501-510. PubMed ID: 33715066
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.