These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
684 related articles for article (PubMed ID: 20219998)
1. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. Shulman GL; Pope DL; Astafiev SV; McAvoy MP; Snyder AZ; Corbetta M J Neurosci; 2010 Mar; 30(10):3640-51. PubMed ID: 20219998 [TBL] [Abstract][Full Text] [Related]
2. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. Shulman GL; Astafiev SV; Franke D; Pope DL; Snyder AZ; McAvoy MP; Corbetta M J Neurosci; 2009 Apr; 29(14):4392-407. PubMed ID: 19357267 [TBL] [Abstract][Full Text] [Related]
3. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation. Cazzoli D; Chechlacz M Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259 [TBL] [Abstract][Full Text] [Related]
4. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Ptak R; Schnider A Neuropsychologia; 2011 Sep; 49(11):3063-70. PubMed ID: 21787795 [TBL] [Abstract][Full Text] [Related]
5. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach. Painter DR; Dux PE; Mattingley JB Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234 [TBL] [Abstract][Full Text] [Related]
6. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control. Natale E; Marzi CA; Macaluso E Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706 [TBL] [Abstract][Full Text] [Related]
7. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. Vossel S; Weidner R; Driver J; Friston KJ; Fink GR J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813 [TBL] [Abstract][Full Text] [Related]
9. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. Indovina I; Macaluso E Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797 [TBL] [Abstract][Full Text] [Related]
10. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames. Wilson KD; Woldorff MG; Mangun GR Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968 [TBL] [Abstract][Full Text] [Related]
11. Transient and sustained brain activity during anticipatory visuospatial attention. Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100 [TBL] [Abstract][Full Text] [Related]
12. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex. Duecker F; Formisano E; Sack AT J Cogn Neurosci; 2013 Aug; 25(8):1332-42. PubMed ID: 23574586 [TBL] [Abstract][Full Text] [Related]
13. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study. Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000 [TBL] [Abstract][Full Text] [Related]
14. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. Kucyi A; Hodaie M; Davis KD J Neurophysiol; 2012 Dec; 108(12):3382-92. PubMed ID: 23019004 [TBL] [Abstract][Full Text] [Related]
15. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study. Capotosto P; Babiloni C; Romani GL; Corbetta M Cereb Cortex; 2012 Feb; 22(2):446-54. PubMed ID: 21666126 [TBL] [Abstract][Full Text] [Related]
16. The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research. Duecker F; Sack AT Neuropsychologia; 2015 Jul; 74():21-9. PubMed ID: 25451041 [TBL] [Abstract][Full Text] [Related]
17. Neural systems for visual orienting and their relationships to spatial working memory. Corbetta M; Kincade JM; Shulman GL J Cogn Neurosci; 2002 Apr; 14(3):508-23. PubMed ID: 11970810 [TBL] [Abstract][Full Text] [Related]
18. Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus. Rosen ML; Stern CE; Michalka SW; Devaney KJ; Somers DC J Neurosci; 2015 Aug; 35(32):11358-63. PubMed ID: 26269642 [TBL] [Abstract][Full Text] [Related]
19. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. Kincade JM; Abrams RA; Astafiev SV; Shulman GL; Corbetta M J Neurosci; 2005 May; 25(18):4593-604. PubMed ID: 15872107 [TBL] [Abstract][Full Text] [Related]
20. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Battelli L; Grossman ED; Plow EB Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]