BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20220079)

  • 1. Tonotopic tuning in a sound localization circuit.
    Slee SJ; Higgs MH; Fairhall AL; Spain WJ
    J Neurophysiol; 2010 May; 103(5):2857-75. PubMed ID: 20220079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.
    Hamlet WR; Liu YW; Tang ZQ; Lu Y
    Front Neural Circuits; 2014; 8():51. PubMed ID: 24904297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
    Palanca-Castan N; Köppl C
    Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick.
    Kuba H; Yamada R; Fukui I; Ohmori H
    J Neurosci; 2005 Feb; 25(8):1924-34. PubMed ID: 15728832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem.
    MacLeod KM; Horiuchi TK; Carr CE
    J Neurophysiol; 2007 Apr; 97(4):2863-74. PubMed ID: 17251365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling coincidence detection in nucleus laminaris.
    Grau-Serrat V; Carr CE; Simon JZ
    Biol Cybern; 2003 Nov; 89(5):388-96. PubMed ID: 14669019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic plasticity induced by group II metabotropic glutamate receptors via enhancement of high-threshold KV currents in sound localizing neurons.
    Hamlet WR; Lu Y
    Neuroscience; 2016 Jun; 324():177-90. PubMed ID: 26964678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic depression in the localization of sound.
    Cook DL; Schwindt PC; Grande LA; Spain WJ
    Nature; 2003 Jan; 421(6918):66-70. PubMed ID: 12511955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons.
    Reyes AD; Rubel EW; Spain WJ
    J Neurosci; 1996 Feb; 16(3):993-1007. PubMed ID: 8558268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
    Drucker B; Goldwyn JH
    Biol Cybern; 2023 Apr; 117(1-2):143-162. PubMed ID: 37129628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonotopic Variation of the T-Type Ca
    Fukaya R; Yamada R; Kuba H
    J Neurosci; 2018 Jan; 38(2):335-346. PubMed ID: 29167400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken.
    Kuba H; Yamada R; Ohmori H
    J Physiol; 2003 Oct; 552(Pt 2):611-20. PubMed ID: 14561841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory-Inhibitory Synaptic Coupling in Avian Nucleus Magnocellularis.
    Al-Yaari M; Yamada R; Kuba H
    J Neurosci; 2020 Jan; 40(3):619-631. PubMed ID: 31727796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.