These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20220079)

  • 21. Short-term synaptic depression is topographically distributed in the cochlear nucleus of the chicken.
    Oline SN; Burger RM
    J Neurosci; 2014 Jan; 34(4):1314-24. PubMed ID: 24453322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
    Kettler L; Carr CE
    J Neurosci; 2019 May; 39(20):3882-3896. PubMed ID: 30886018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coincidence detection by binaural neurons in the chick brain stem.
    Joseph AW; Hyson RL
    J Neurophysiol; 1993 Apr; 69(4):1197-211. PubMed ID: 8492159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus laminaris of the chick.
    Okuda H; Yamada R; Kuba H; Ohmori H
    J Physiol; 2013 Jan; 591(1):365-78. PubMed ID: 23090950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maps of ITD in the nucleus laminaris of the barn owl.
    Carr C; Shah S; Ashida G; McColgan T; Wagner H; Kuokkanen PT; Kempter R; Köppl C
    Adv Exp Med Biol; 2013; 787():215-22. PubMed ID: 23716226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two GABAA responses with distinct kinetics in a sound localization circuit.
    Tang ZQ; Lu Y
    J Physiol; 2012 Aug; 590(16):3787-805. PubMed ID: 22615438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computation of interaural time difference in the owl's coincidence detector neurons.
    Funabiki K; Ashida G; Konishi M
    J Neurosci; 2011 Oct; 31(43):15245-56. PubMed ID: 22031870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The analysis of interaural time differences in the chick brain stem.
    Hyson RL
    Physiol Behav; 2005 Oct; 86(3):297-305. PubMed ID: 16202434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal-to-noise ratio in the membrane potential of the owl's auditory coincidence detectors.
    Ashida G; Funabiki K; Kuokkanen PT; Kempter R; Carr CE
    J Neurophysiol; 2012 Nov; 108(10):2837-45. PubMed ID: 22933726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning.
    Wu GK; Li P; Tao HW; Zhang LI
    Neuron; 2006 Nov; 52(4):705-15. PubMed ID: 17114053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of interaural time differences in the alligator.
    Carr CE; Soares D; Smolders J; Simon JZ
    J Neurosci; 2009 Jun; 29(25):7978-90. PubMed ID: 19553438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal specializations for the processing of interaural difference cues in the chick.
    Ohmori H
    Front Neural Circuits; 2014; 8():47. PubMed ID: 24847212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular Strategies for Frequency-Dependent Computation of Interaural Time Difference.
    Yamada R; Kuba H
    Front Synaptic Neurosci; 2022; 14():891740. PubMed ID: 35602551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones.
    Geis HR; Borst JG
    J Neurophysiol; 2009 Apr; 101(4):2002-16. PubMed ID: 19193772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gain adjustment of inhibitory synapses in the auditory system.
    Kotak VC; Sanes DH
    Biol Cybern; 2003 Nov; 89(5):363-70. PubMed ID: 14669016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle.
    Lippe W; Rubel EW
    J Comp Neurol; 1985 Jul; 237(2):273-89. PubMed ID: 4031125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A circuit for coding interaural time differences in the chick brainstem.
    Overholt EM; Rubel EW; Hyson RL
    J Neurosci; 1992 May; 12(5):1698-708. PubMed ID: 1578264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of inhibitory feedback in a network model of avian brain stem.
    Dasika VK; White JA; Carney LH; Colburn HS
    J Neurophysiol; 2005 Jul; 94(1):400-14. PubMed ID: 15744007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.