These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20220225)

  • 1. The influence of Ga(+) irradiation on the transport properties of mesoscopic conducting thin films.
    Barzola-Quiquia J; Dusari S; Bridoux G; Bern F; Molle A; Esquinazi P
    Nanotechnology; 2010 Apr; 21(14):145306. PubMed ID: 20220225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material damage induced by nanofabrication processes in manganite thin films.
    Balcells L; Abad L; Rojas H; Martínez B
    Nanotechnology; 2008 Apr; 19(13):135307. PubMed ID: 19636146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope.
    Spoddig D; Schindler K; Rödiger P; Barzola-Quiquia J; Fritsch K; Mulders H; Esquinazi P
    Nanotechnology; 2007 Dec; 18(49):495202. PubMed ID: 20442468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation on focused electron/ion beam induced degradation mechanisms of conjugated polymers.
    Sezen M; Plank H; Fisslthaler E; Chernev B; Zankel A; Tchernychova E; Blümel A; List EJ; Grogger W; Pölt P
    Phys Chem Chem Phys; 2011 Dec; 13(45):20235-40. PubMed ID: 21993473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The assessment of microscopic charging effects induced by focused electron and ion beam irradiation of dielectrics.
    Stevens-Kalceff MA; Levick KJ
    Microsc Res Tech; 2007 Mar; 70(3):195-204. PubMed ID: 17279517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale structure, composition, and charge transport analysis of transparent conducting oxide nanowires written by focused ion beam implantation.
    Sosa NE; Chen C; Liu J; Xie S; Marks TJ; Hersam MC
    J Am Chem Soc; 2010 Jun; 132(21):7347-54. PubMed ID: 20459094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.
    Urbánek M; Uhlír V; Bábor P; Kolíbalová E; Hrncír T; Spousta J; Sikola T
    Nanotechnology; 2010 Apr; 21(14):145304. PubMed ID: 20215654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion mixing at 20 keV: a comparison of the effects of Ga+, Ar+ and CF4+ ion irradiation.
    Barna A; Gurban S; Kotis L; Toth AL; Menyhard M
    Ultramicroscopy; 2008 Dec; 109(1):129-32. PubMed ID: 18977599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective removal of Ga residue from focused ion beam using a plasma cleaner.
    Ko DS; Park YM; Kim SD; Kim YW
    Ultramicroscopy; 2007; 107(4-5):368-73. PubMed ID: 17088021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.
    Kern P; Müller Y; Patscheider J; Michler J
    J Phys Chem B; 2006 Nov; 110(47):23660-8. PubMed ID: 17125324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion beam degradation analysis of poly(3-hexylthiophene) (P3HT): can cryo-FIB minimize irradiation damage?
    Sezen M; Plank H; Nellen PM; Meier S; Chernev B; Grogger W; Fisslthaler E; List EJ; Scherf U; Poelt P
    Phys Chem Chem Phys; 2009 Jul; 11(25):5130-3. PubMed ID: 19562145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ga+ focused-ion-beam implantation-induced masking for H2 etching of ZnO films.
    Fang HC; Huang JH; Chu WH; Liu CP
    Nanotechnology; 2010 Dec; 21(50):505703. PubMed ID: 21098939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam.
    Inkson BJ; Dehm G; Wagner T
    J Microsc; 2004 Jun; 214(Pt 3):252-60. PubMed ID: 15157193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.
    Ghosh S; Saurav M; Pandey B; Srivastava P
    J Nanosci Nanotechnol; 2008 May; 8(5):2655-8. PubMed ID: 18572702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films.
    Abou-Ras D; Marsen B; Rissom T; Frost F; Schulz H; Bauer F; Efimova V; Hoffmann V; Eicke A
    Micron; 2012 Feb; 43(2-3):470-4. PubMed ID: 22192980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The out of beam sight effects in focused ion beam processing.
    Tripathi SK; Shukla N; Rajput NS; Kulkarni VN
    Nanotechnology; 2009 Jul; 20(27):275301. PubMed ID: 19528677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale current modulations in Pr(0.7)Ca(0.3)MnO(3) thin films.
    Moon HB; Kim CH; Ahn JS; Cho JH
    J Phys Chem B; 2006 Dec; 110(48):24277-80. PubMed ID: 17134175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting transition in Nb nanowires fabricated using focused ion beam.
    Tettamanzi GC; Pakes CI; Potenza A; Rubanov S; Marrows CH; Prawer S
    Nanotechnology; 2009 Nov; 20(46):465302. PubMed ID: 19843991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current.
    Nagoshi K; Honda J; Sakaue H; Takahagi T; Suzuki H
    Rev Sci Instrum; 2009 Dec; 80(12):125102. PubMed ID: 20059165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetization reversal in Pt/Co(0.5 nm)/Pt nano-platelets patterned by focused ion beam lithography.
    Adam JP; Jamet JP; Ferré J; Mougin A; Rohart S; Weil R; Bourhis E; Gierak J
    Nanotechnology; 2010 Nov; 21(44):445302. PubMed ID: 20921591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.