These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20221066)
1. Wave-front interpretation with Zernike polynomials. Wang JY; Silva DE Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066 [TBL] [Abstract][Full Text] [Related]
2. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils. Díaz JA; Mahajan VN Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982 [TBL] [Abstract][Full Text] [Related]
3. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
4. Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape. Upton R; Ellerbroek B Opt Lett; 2004 Dec; 29(24):2840-2. PubMed ID: 15645798 [TBL] [Abstract][Full Text] [Related]
5. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
6. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils. Mahajan VN Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908 [TBL] [Abstract][Full Text] [Related]
7. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
8. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment. Díaz JA; Mahajan VN Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998 [TBL] [Abstract][Full Text] [Related]
11. Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes. Swantner W; Chow WW Appl Opt; 1994 Apr; 33(10):1832-7. PubMed ID: 20885515 [TBL] [Abstract][Full Text] [Related]
12. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
13. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
14. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient. Sun W; Wang S; He X; Xu B J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Carvalho LA Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604 [TBL] [Abstract][Full Text] [Related]
17. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils. Mahajan VN Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284 [TBL] [Abstract][Full Text] [Related]
18. Least-squares fitting of orthogonal polynomials to the wave-aberration function. Rayces JL Appl Opt; 1992 May; 31(13):2223-8. PubMed ID: 20720881 [TBL] [Abstract][Full Text] [Related]
19. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms. Dai F; Tang F; Wang X; Feng P; Sasaki O Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496 [TBL] [Abstract][Full Text] [Related]
20. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]