These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20221126)

  • 1. Measurement of average atmospheric temperature using a CO(2) laser radar.
    Murray ER; Powell DD; van der Laan JE
    Appl Opt; 1980 Jun; 19(11):1794-7. PubMed ID: 20221126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-ended measurement of infrared extinction using lidar.
    Murray ER; Williams MF; van der Laan JE
    Appl Opt; 1978 Jan; 17(2):296-9. PubMed ID: 20174399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote measurement of ethylene using a CO(2) differential-absorption lidar.
    Murray ER; van der Laan JE
    Appl Opt; 1978 Mar; 17(5):814-7. PubMed ID: 20197878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing of NO using a differential absorption lidar.
    Menyuk N; Killinger DK; Defeo WE
    Appl Opt; 1980 Oct; 19(19):3282-6. PubMed ID: 20234607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent 1-microm lidar measurements of atmospheric-turbulence-induced spatial decorrelation using a multielement heterodyne detector array.
    Chan KP; Killinger DK
    Appl Opt; 1992 Apr; 31(10):1505-10. PubMed ID: 20720784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar.
    Menyuk N; Killinger DK; Defeo WE
    Appl Opt; 1982 Jun; 21(12):2275-86. PubMed ID: 20396016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Raman Lidar measuring tropospheric temperature profiles with many rotational Raman lines].
    Su J; Zhang YC; Hu SX; Cao KF; Zhao PT; Wang SL; Xie J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1781-5. PubMed ID: 18975802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edge technique: theory and application to the lidar measurement of atmospheric wind.
    Korb CL; Gentry BM; Weng CY
    Appl Opt; 1992 Jul; 31(21):4202-13. PubMed ID: 20725404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO(2) DIAL measurements of water vapor.
    Grant WB; Margolis JS; Brothers AM; Tratt DM
    Appl Opt; 1987 Aug; 26(15):3033-42. PubMed ID: 20490006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar.
    Endemann M; Byer RL
    Appl Opt; 1981 Sep; 20(18):3211-7. PubMed ID: 20333123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles.
    Cha S; Chan KP; Killinger DK
    Appl Opt; 1991 Sep; 30(27):3938-43. PubMed ID: 20706485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation.
    Kunz GJ
    Appl Opt; 1996 Jun; 35(18):3255-60. PubMed ID: 21102710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning lidar with a coupled radar safety system.
    Kent GS; Hansen GM
    Appl Opt; 1999 Oct; 38(30):6383-7. PubMed ID: 18324168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.
    Ben-David A; Emery SL; Gotoff SW; D'Amico FM
    Appl Opt; 1992 Jul; 31(21):4224-32. PubMed ID: 20725406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pulse-repetition-freqyency lidar system using a single telescope for transmission and reception.
    Argall PS; Jacka F
    Appl Opt; 1996 May; 35(15):2619-29. PubMed ID: 21085407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential absorption lidar technique for measurement of the atmospheric pressure profile.
    Korb CL; Weng CY
    Appl Opt; 1983 Dec; 22(23):3759-70. PubMed ID: 20407527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal processing and calibration of continuous-wave focused CO(2) Doppler lidars for atmospheric backscatter measurement.
    Rothermel J; Chambers DM; Jarzembski MA; Srivastava V; Bowdle DA; Jones WD
    Appl Opt; 1996 Apr; 35(12):2083-95. PubMed ID: 21085337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.