BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20221251)

  • 1. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients.
    Ahmad A; Enzlin JH; Bhagwat NR; Wijgers N; Raams A; Appledoorn E; Theil AF; J Hoeijmakers JH; Vermeulen W; J Jaspers NG; Schärer OD; Niedernhofer LJ
    PLoS Genet; 2010 Mar; 6(3):e1000871. PubMed ID: 20221251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xeroderma pigmentosum group F protein binds to Eg5 and is required for proper mitosis: implications for XP-F and XFE.
    Tan LJ; Saijo M; Kuraoka I; Narita T; Takahata C; Iwai S; Tanaka K
    Genes Cells; 2012 Mar; 17(3):173-85. PubMed ID: 22353549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of reactive oxygen species-induced 3'-blocked ends by XPF-ERCC1.
    Fisher LA; Samson L; Bessho T
    Chem Res Toxicol; 2011 Nov; 24(11):1876-81. PubMed ID: 22007867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.
    Orelli B; McClendon TB; Tsodikov OV; Ellenberger T; Niedernhofer LJ; Schärer OD
    J Biol Chem; 2010 Feb; 285(6):3705-3712. PubMed ID: 19940136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of UV-induced chromosome aberrations involves ERCC1 and XPF but not other nucleotide excision repair genes.
    Chipchase MD; Melton DW
    DNA Repair (Amst); 2002 Apr; 1(4):335-40. PubMed ID: 12509251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation.
    Jones M; Beuron F; Borg A; Nans A; Earl CP; Briggs DC; Snijders AP; Bowles M; Morris EP; Linch M; McDonald NQ
    Nat Commun; 2020 Feb; 11(1):1120. PubMed ID: 32111838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features.
    Sabatella M; Theil AF; Ribeiro-Silva C; Slyskova J; Thijssen K; Voskamp C; Lans H; Vermeulen W
    Nucleic Acids Res; 2018 Oct; 46(18):9563-9577. PubMed ID: 30165384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF.
    Lehmann J; Seebode C; Smolorz S; Schubert S; Emmert S
    Cell Mol Life Sci; 2017 Jun; 74(11):2081-2094. PubMed ID: 28130555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of group F xeroderma pigmentosum cells to UV and mitomycin C relative to levels of XPF and ERCC1 overexpression.
    Yagi T; Katsuya A; Koyano A; Takebe H
    Mutagenesis; 1998 Nov; 13(6):595-9. PubMed ID: 9862190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of XPG and XPF/ERCC1 endonucleases in UV-induced immunostaining of PCNA in fibroblasts.
    Miura M; Nakamura S; Sasaki T; Takasaki Y; Shiomi T; Yamaizumi M
    Exp Cell Res; 1996 Jul; 226(1):126-32. PubMed ID: 8660947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of interaction domains between human repair proteins ERCC1 and XPF.
    de Laat WL; Sijbers AM; Odijk H; Jaspers NG; Hoeijmakers JH
    Nucleic Acids Res; 1998 Sep; 26(18):4146-52. PubMed ID: 9722633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease.
    Sijbers AM; de Laat WL; Ariza RR; Biggerstaff M; Wei YF; Moggs JG; Carter KC; Shell BK; Evans E; de Jong MC; Rademakers S; de Rooij J; Jaspers NG; Hoeijmakers JH; Wood RD
    Cell; 1996 Sep; 86(5):811-22. PubMed ID: 8797827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair.
    Gaillard PHL; Wood RD
    Nucleic Acids Res; 2001 Feb; 29(4):872-9. PubMed ID: 11160918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair.
    Su Y; Orelli B; Madireddy A; Niedernhofer LJ; Schärer OD
    J Biol Chem; 2012 Jun; 287(26):21846-55. PubMed ID: 22547097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs.
    Kirschner K; Melton DW
    Anticancer Res; 2010 Sep; 30(9):3223-32. PubMed ID: 20944091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERCC1-XPF endonuclease facilitates DNA double-strand break repair.
    Ahmad A; Robinson AR; Duensing A; van Drunen E; Beverloo HB; Weisberg DB; Hasty P; Hoeijmakers JH; Niedernhofer LJ
    Mol Cell Biol; 2008 Aug; 28(16):5082-92. PubMed ID: 18541667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xeroderma pigmentosum and molecular cloning of DNA repair genes.
    Boulikas T
    Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.
    Faridounnia M; Wienk H; Kovačič L; Folkers GE; Jaspers NG; Kaptein R; Hoeijmakers JH; Boelens R
    J Biol Chem; 2015 Aug; 290(33):20541-55. PubMed ID: 26085086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells.
    Lan L; Hayashi T; Rabeya RM; Nakajima S; Kanno Si; Takao M; Matsunaga T; Yoshino M; Ichikawa M; Riele Ht; Tsuchiya S; Tanaka K; Yasui A
    DNA Repair (Amst); 2004 Feb; 3(2):135-43. PubMed ID: 14706347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F.
    van Vuuren AJ; Appeldoorn E; Odijk H; Yasui A; Jaspers NG; Bootsma D; Hoeijmakers JH
    EMBO J; 1993 Sep; 12(9):3693-701. PubMed ID: 8253091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.