BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 20221454)

  • 1. A new protocol in photodynamic therapy: enhanced tumour cell death by combining two different photosensitizers.
    Villanueva A; Stockert JC; Cañete M; Acedo P
    Photochem Photobiol Sci; 2010 Mar; 9(3):295-7. PubMed ID: 20221454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer.
    Acedo P; Stockert JC; Cañete M; Villanueva A
    Cell Death Dis; 2014 Mar; 5(3):e1122. PubMed ID: 24625981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phthalocyanine-based photosensitizers: more efficient photodynamic therapy?
    Ng DK
    Future Med Chem; 2014; 6(18):1991-3. PubMed ID: 25531964
    [No Abstract]   [Full Text] [Related]  

  • 5. Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review.
    De Annunzio SR; Costa NCS; Mezzina RD; Graminha MAS; Fontana CR
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31398812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current clinical and preclinical photosensitizers for use in photodynamic therapy.
    Detty MR; Gibson SL; Wagner SJ
    J Med Chem; 2004 Jul; 47(16):3897-915. PubMed ID: 15267226
    [No Abstract]   [Full Text] [Related]  

  • 7. Pharmacokinetic and tumour-photosensitizing properties of the cationic porphyrin meso-tetra(4N-methylpyridyl)porphine.
    Villanueva A; Jori G
    Cancer Lett; 1993 Sep; 73(1):59-64. PubMed ID: 8402599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy.
    Rogers L; Senge MO
    Future Med Chem; 2014 May; 6(7):775-92. PubMed ID: 24941872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer.
    Debele TA; Mekuria SL; Tsai HC
    Int J Biol Macromol; 2017 May; 98():125-138. PubMed ID: 28137464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A glutathione-activated phthalocyanine-based photosensitizer for photodynamic therapy.
    He H; Lo PC; Ng DK
    Chemistry; 2014 May; 20(21):6241-5. PubMed ID: 24737172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.
    Secret E; Maynadier M; Gallud A; Chaix A; Bouffard E; Gary-Bobo M; Marcotte N; Mongin O; El Cheikh K; Hugues V; Auffan M; Frochot C; Morère A; Maillard P; Blanchard-Desce M; Sailor MJ; Garcia M; Durand JO; Cunin F
    Adv Mater; 2014 Dec; 26(45):7643-8. PubMed ID: 25323443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy.
    Jiang Z; Shao J; Yang T; Wang J; Jia L
    J Pharm Biomed Anal; 2014 Jan; 87():98-104. PubMed ID: 23746989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of multiple low-dose photodynamic TMPYP4 therapy on cervical cancer tumour growth in nude mice.
    Liu AH; Sun X; Wei XQ; Zhang YZ
    Asian Pac J Cancer Prev; 2013; 14(9):5371-4. PubMed ID: 24175828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porphycenes: facts and prospects in photodynamic therapy of cancer.
    Stockert JC; Cañete M; Juarranz A; Villanueva A; Horobin RW; Borrell JI; Teixidó J; Nonell S
    Curr Med Chem; 2007; 14(9):997-1026. PubMed ID: 17439399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards matched pairs of porphyrin-Re(I) /(99m) Tc(I) conjugates that combine photodynamic activity with fluorescence and radio imaging.
    Gianferrara T; Spagnul C; Alberto R; Gasser G; Ferrari S; Pierroz V; Bergamo A; Alessio E
    ChemMedChem; 2014 Jun; 9(6):1231-7. PubMed ID: 24678041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel zinc‑ and silicon‑phthalocyanines as photosensitizers for photodynamic therapy of cholangiocarcinoma.
    Schmidt J; Kuzyniak W; Berkholz J; Steinemann G; Ogbodu R; Hoffmann B; Nouailles G; Gürek AG; Nitzsche B; Höpfner M
    Int J Mol Med; 2018 Jul; 42(1):534-546. PubMed ID: 29693115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy.
    Hu Z; Zhao F; Wang Y; Huang Y; Chen L; Li N; Li J; Li Z; Yi G
    Chem Commun (Camb); 2014 Sep; 50(74):10815-8. PubMed ID: 25089303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments.
    Garland MJ; Cassidy CM; Woolfson D; Donnelly RF
    Future Med Chem; 2009 Jul; 1(4):667-91. PubMed ID: 21426032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers.
    Pavani C; Uchoa AF; Oliveira CS; Iamamoto Y; Baptista MS
    Photochem Photobiol Sci; 2009 Feb; 8(2):233-40. PubMed ID: 19247516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins.
    Baldea I; Olteanu DE; Bolfa P; Tabaran F; Ion RM; Filip GA
    J Photochem Photobiol B; 2016 Aug; 161():402-10. PubMed ID: 27314538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.