These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20221534)
1. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases. Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534 [TBL] [Abstract][Full Text] [Related]
2. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
3. Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Barton BE; Rauchfuss TB Inorg Chem; 2008 Apr; 47(7):2261-3. PubMed ID: 18333613 [TBL] [Abstract][Full Text] [Related]
4. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
5. Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4. Zaffaroni R; Rauchfuss TB; Gray DL; De Gioia L; Zampella G J Am Chem Soc; 2012 Nov; 134(46):19260-9. PubMed ID: 23095145 [TBL] [Abstract][Full Text] [Related]
6. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
7. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. Carroll ME; Barton BE; Rauchfuss TB; Carroll PJ J Am Chem Soc; 2012 Nov; 134(45):18843-52. PubMed ID: 23126330 [TBL] [Abstract][Full Text] [Related]
8. Coordination chemistry of [HFe(CN)(2)(CO)(3)](-) and its derivatives: toward a model for the iron subsite of the [NiFe]-hydrogenases. Whaley CM; Rauchfuss TB; Wilson SR Inorg Chem; 2009 May; 48(10):4462-9. PubMed ID: 19374433 [TBL] [Abstract][Full Text] [Related]
9. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916 [TBL] [Abstract][Full Text] [Related]
10. Aza- and oxadithiolates are probable proton relays in functional models for the [FeFe]-hydrogenases. Barton BE; Olsen MT; Rauchfuss TB J Am Chem Soc; 2008 Dec; 130(50):16834-5. PubMed ID: 19053433 [TBL] [Abstract][Full Text] [Related]
11. Chelate control of diiron(I) dithiolates relevant to the [Fe-Fe]- hydrogenase active site. Justice AK; Zampella G; De Gioia L; Rauchfuss TB; van der Vlugt JI; Wilson SR Inorg Chem; 2007 Mar; 46(5):1655-64. PubMed ID: 17279743 [TBL] [Abstract][Full Text] [Related]
12. Redox and structural properties of mixed-valence models for the active site of the [FeFe]-hydrogenase: progress and challenges. Justice AK; De Gioia L; Nilges MJ; Rauchfuss TB; Wilson SR; Zampella G Inorg Chem; 2008 Aug; 47(16):7405-14. PubMed ID: 18620387 [TBL] [Abstract][Full Text] [Related]
14. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties. Carroll ME; Barton BE; Gray DL; Mack AE; Rauchfuss TB Inorg Chem; 2011 Oct; 50(19):9554-63. PubMed ID: 21866886 [TBL] [Abstract][Full Text] [Related]
15. New nitrosyl derivatives of diiron dithiolates related to the active site of the [FeFe]-hydrogenases. Olsen MT; Justice AK; Gloaguen F; Rauchfuss TB; Wilson SR Inorg Chem; 2008 Dec; 47(24):11816-24. PubMed ID: 19007207 [TBL] [Abstract][Full Text] [Related]
16. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098 [TBL] [Abstract][Full Text] [Related]
17. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution. Bertini L; Fantucci P; De Gioia L; Zampella G Inorg Chem; 2013 Sep; 52(17):9826-41. PubMed ID: 23952259 [TBL] [Abstract][Full Text] [Related]
18. Extending the motif of the [FeFe]-hydrogenase active site models: protonation of Fe2(NR)2(CO)6-xLx species. Volkers PI; Rauchfuss TB J Inorg Biochem; 2007 Nov; 101(11-12):1748-51. PubMed ID: 17606299 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053 [TBL] [Abstract][Full Text] [Related]
20. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe Unwin DG; Ghosh S; Ridley F; Richmond MG; Holt KB; Hogarth G Dalton Trans; 2019 May; 48(18):6174-6190. PubMed ID: 30942796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]