These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 20221534)
21. Mechanistic aspects of the protonation of [FeFe]-hydrogenase subsite analogues. Jablonskyte A; Wright JA; Pickett CJ Dalton Trans; 2010 Mar; 39(12):3026-34. PubMed ID: 20221536 [TBL] [Abstract][Full Text] [Related]
22. Diiron dithiolato carbonyls related to the H(ox)CO state of [FeFe]-hydrogenase. Justice AK; Nilges MJ; Rauchfuss TB; Wilson SR; De Gioia L; Zampella G J Am Chem Soc; 2008 Apr; 130(15):5293-301. PubMed ID: 18341276 [TBL] [Abstract][Full Text] [Related]
23. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512 [TBL] [Abstract][Full Text] [Related]
24. Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo, and FeMn Carbonyl Dithiolates. Carroll ME; Chen J; Gray DE; Lansing JC; Rauchfuss TB; Schilter D; Volkers PI; Wilson SR Organometallics; 2014 Feb; 33(4):858-867. PubMed ID: 24803716 [TBL] [Abstract][Full Text] [Related]
25. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
26. Unveiling how stereoelectronic factors affect kinetics and thermodynamics of protonation regiochemistry in [FeFe] hydrogenase synthetic models: a DFT investigation. Zampella G; Fantucci P; De Gioia L J Am Chem Soc; 2009 Aug; 131(31):10909-17. PubMed ID: 19621919 [TBL] [Abstract][Full Text] [Related]
27. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
28. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842 [TBL] [Abstract][Full Text] [Related]
29. New reactions of terminal hydrides on a diiron dithiolate. Wang W; Rauchfuss TB; Zhu L; Zampella G J Am Chem Soc; 2014 Apr; 136(15):5773-82. PubMed ID: 24661238 [TBL] [Abstract][Full Text] [Related]
31. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand. Wang N; Wang M; Liu J; Jin K; Chen L; Sun L Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647 [TBL] [Abstract][Full Text] [Related]
32. Isolation of a mixed valence diiron hydride: evidence for a spectator hydride in hydrogen evolution catalysis. Wang W; Nilges MJ; Rauchfuss TB; Stein M J Am Chem Soc; 2013 Mar; 135(9):3633-9. PubMed ID: 23383865 [TBL] [Abstract][Full Text] [Related]
34. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
35. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Ezzaher S; Capon JF; Gloaguen F; Pétillon FY; Schollhammer P; Talarmin J; Pichon R; Kervarec N Inorg Chem; 2007 Apr; 46(9):3426-8. PubMed ID: 17397148 [TBL] [Abstract][Full Text] [Related]
36. EPR/ENDOR, Mössbauer, and quantum-chemical investigations of diiron complexes mimicking the active oxidized state of [FeFe]hydrogenase. Silakov A; Olsen MT; Sproules S; Reijerse EJ; Rauchfuss TB; Lubitz W Inorg Chem; 2012 Aug; 51(15):8617-28. PubMed ID: 22800196 [TBL] [Abstract][Full Text] [Related]
37. Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-hydrogenase active site: properties and oxygen damage repair possibilities. Liu T; Li B; Singleton ML; Hall MB; Darensbourg MY J Am Chem Soc; 2009 Jun; 131(23):8296-307. PubMed ID: 19507910 [TBL] [Abstract][Full Text] [Related]
38. [Fe2(SR)2(mu-CO)(CNMe)6]2+ and analogues: a new class of diiron dithiolates as structural models for the H(ox)Air state of the fe-only hydrogenase. Boyke CA; Rauchfuss TB; Wilson SR; Rohmer MM; Bénard M J Am Chem Soc; 2004 Nov; 126(46):15151-60. PubMed ID: 15548012 [TBL] [Abstract][Full Text] [Related]
39. Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases. van der Vlugt JI; Rauchfuss TB; Whaley CM; Wilson SR J Am Chem Soc; 2005 Nov; 127(46):16012-3. PubMed ID: 16287273 [TBL] [Abstract][Full Text] [Related]