These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20221538)

  • 1. Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound.
    Vaccaro L; Artero V; Canaguier S; Fontecave M; Field MJ
    Dalton Trans; 2010 Mar; 39(12):3043-9. PubMed ID: 20221538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies.
    Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M
    Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ni(xbsms)Ru(CO)2Cl2]: a bioinspired nickel-ruthenium functional model of [NiFe] hydrogenase.
    Oudart Y; Artero V; Pécaut J; Fontecave M
    Inorg Chem; 2006 May; 45(11):4334-6. PubMed ID: 16711679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step.
    Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V
    Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.
    Ogata H; Lubitz W; Higuchi Y
    Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-ruthenium-based complexes as biomimetic models of [NiFe] and [NiFeSe] hydrogenases for dihydrogen evolution.
    Gezer G; Verbeek S; Siegler MA; Bouwman E
    Dalton Trans; 2017 Oct; 46(39):13590-13596. PubMed ID: 28952642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.
    Kure B; Matsumoto T; Ichikawa K; Fukuzumi S; Higuchi Y; Yagi T; Ogo S
    Dalton Trans; 2008 Sep; (35):4747-55. PubMed ID: 18728883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition.
    Lill SO; Siegbahn PE
    Biochemistry; 2009 Feb; 48(5):1056-66. PubMed ID: 19138102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.
    Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W
    J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dinuclear Ni(mu-H)Ru complex derived from H2.
    Ogo S; Kabe R; Uehara K; Kure B; Nishimura T; Menon SC; Harada R; Fukuzumi S; Higuchi Y; Ohhara T; Tamada T; Kuroki R
    Science; 2007 Apr; 316(5824):585-7. PubMed ID: 17463285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation.
    Weber K; Krämer T; Shafaat HS; Weyhermüller T; Bill E; van Gastel M; Neese F; Lubitz W
    J Am Chem Soc; 2012 Dec; 134(51):20745-55. PubMed ID: 23194246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical spectroscopy of the Ni(II) intermediate states in the catalytic cycle and the activation of [NiFe] hydrogenases.
    Krämer T; Kampa M; Lubitz W; van Gastel M; Neese F
    Chembiochem; 2013 Sep; 14(14):1898-905. PubMed ID: 23703916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical aspects of [NiFe]hydrogenase ligand composition.
    Ichikawa K; Matsumoto T; Ogo S
    Dalton Trans; 2009 Jun; (22):4304-9. PubMed ID: 19662307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.
    Haumann M; Porthun A; Buhrke T; Liebisch P; Meyer-Klaucke W; Friedrich B; Dau H
    Biochemistry; 2003 Sep; 42(37):11004-15. PubMed ID: 12974636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state.
    Ogata H; Hirota S; Nakahara A; Komori H; Shibata N; Kato T; Kano K; Higuchi Y
    Structure; 2005 Nov; 13(11):1635-42. PubMed ID: 16271886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic DFT calculation of the reaction cycle intermediates of [NiFe] hydrogenase: a contribution to understanding the enzymatic mechanism.
    Stein M; Lubitz W
    J Inorg Biochem; 2004 May; 98(5):862-77. PubMed ID: 15134933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the mechanism of electrocatalytic hydrogen evolution mediated by Fe2(S2C3H6)(CO)6: the simplest functional model of the Fe-hydrogenase active site.
    Greco C; Zampella G; Bertini L; Bruschi M; Fantucci P; De Gioia L
    Inorg Chem; 2007 Jan; 46(1):108-16. PubMed ID: 17198418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrons from hydrogen.
    Ogo S
    Chem Commun (Camb); 2009 Jun; (23):3317-25. PubMed ID: 19503862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Foerster S; Stein M; Brecht M; Ogata H; Higuchi Y; Lubitz W
    J Am Chem Soc; 2003 Jan; 125(1):83-93. PubMed ID: 12515509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.