These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20221543)

  • 1. Catalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from Portunus trituberculatus.
    Fujieda N; Yakiyama A; Itoh S
    Dalton Trans; 2010 Mar; 39(12):3083-92. PubMed ID: 20221543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monooxygenase activity of Octopus vulgaris hemocyanin.
    Suzuki K; Shimokawa C; Morioka C; Itoh S
    Biochemistry; 2008 Jul; 47(27):7108-15. PubMed ID: 18553939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant enhancement of monooxygenase activity of oxygen carrier protein hemocyanin by urea.
    Morioka C; Tachi Y; Suzuki S; Itoh S
    J Am Chem Soc; 2006 May; 128(21):6788-9. PubMed ID: 16719449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Five monomeric hemocyanin subunits from Portunus trituberculatus: purification, spectroscopic characterization, and quantitative evaluation of phenol monooxygenase activity.
    Fujieda N; Yakiyama A; Itoh S
    Biochim Biophys Acta; 2010 Nov; 1804(11):2128-35. PubMed ID: 20727990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system.
    Yamazaki S; Itoh S
    J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity.
    Salvato B; Santamaria M; Beltramini M; Alzuet G; Casella L
    Biochemistry; 1998 Oct; 37(40):14065-77. PubMed ID: 9760242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monooxygenase activity of type 3 copper proteins.
    Itoh S; Fukuzumi S
    Acc Chem Res; 2007 Jul; 40(7):592-600. PubMed ID: 17461541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation mechanism of phenols by dicopper-dioxygen (Cu(2)/O(2)) complexes.
    Osako T; Ohkubo K; Taki M; Tachi Y; Fukuzumi S; Itoh S
    J Am Chem Soc; 2003 Sep; 125(36):11027-33. PubMed ID: 12952484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygenation of phenols to catechols by a (mu-eta 2:eta 2-peroxo)dicopper(II) complex: mechanistic insight into the phenolase activity of tyrosinase.
    Itoh S; Kumei H; Taki M; Nagatomo S; Kitagawa T; Fukuzumi S
    J Am Chem Soc; 2001 Jul; 123(27):6708-9. PubMed ID: 11439064
    [No Abstract]   [Full Text] [Related]  

  • 11. Dioxygen reactivity of copper and heme-copper complexes possessing an imidazole-phenol cross-link.
    Kim E; Kamaraj K; Galliker B; Rubie ND; Moënne-Loccoz P; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Mar; 44(5):1238-47. PubMed ID: 15732964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular heterogeneity of hemocyanin: its role in the adaptive plasticity of Crustacea.
    Giomi F; Beltramini M
    Gene; 2007 Aug; 398(1-2):192-201. PubMed ID: 17555892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of phenolic compounds by lactoperoxidase. Evidence for the presence of a low-potential compound II during catalytic turnover.
    Monzani E; Gatti AL; Profumo A; Casella L; Gullotti M
    Biochemistry; 1997 Feb; 36(7):1918-26. PubMed ID: 9048579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of arthropodan hemocyanin Limulus polyphemus.
    Dolashka-Angelova P; Dolashki A; Stevanovic S; Hristova R; Atanasov B; Nikolov P; Voelter W
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1207-17. PubMed ID: 15741123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of haemocyanin from the anemone hermit crab Dardanus calidus.
    Podda G; Manconi B; Olianas A; Pellegrini M; Messana I; Mura M; Castagnola M; Giardina B; Sanna MT
    J Biochem; 2008 Feb; 143(2):207-16. PubMed ID: 17984120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity.
    Muñoz-Muñoz JL; Berna J; García-Molina Mdel M; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Rodriguez-Lopez JN; Garcia-Canovas F
    Biochem Biophys Res Commun; 2012 Jul; 424(2):228-33. PubMed ID: 22732412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliphatic C-H bond activation initiated by a (mu-eta2:eta2-peroxo)dicopper(II) complex in comparison with cumylperoxyl radical.
    Matsumoto T; Ohkubo K; Honda K; Yazawa A; Furutachi H; Fujinami S; Fukuzumi S; Suzuki M
    J Am Chem Soc; 2009 Jul; 131(26):9258-67. PubMed ID: 19530656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the first oxidative phenol coupling reaction during vancomycin biosynthesis.
    Geib N; Woithe K; Zerbe K; Li DB; Robinson JA
    Bioorg Med Chem Lett; 2008 May; 18(10):3081-4. PubMed ID: 18068978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.