BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20221546)

  • 1. Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach.
    Manna SK; Mazumdar S
    Dalton Trans; 2010 Mar; 39(12):3115-23. PubMed ID: 20221546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing the substrate specificity of P450cam towards diphenylmethane by semi-rational enzyme engineering.
    Hoffmann G; Bönsch K; Greiner-Stöffele T; Ballschmiter M
    Protein Eng Des Sel; 2011 May; 24(5):439-46. PubMed ID: 21273340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.
    Xu F; Bell SG; Rao Z; Wong LL
    Protein Eng Des Sel; 2007 Oct; 20(10):473-80. PubMed ID: 17962225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome P450cam substrate specificity: relationship between structure and catalytic oxidation of alkylbenzenes.
    Sibbesen O; Zhang Z; Ortiz de Montellano PR
    Arch Biochem Biophys; 1998 May; 353(2):285-96. PubMed ID: 9606963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.
    Mayhew MP; Reipa V; Holden MJ; Vilker VL
    Biotechnol Prog; 2000; 16(4):610-6. PubMed ID: 10933836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450 active site plasticity: attenuation of imidazole binding in cytochrome P450(cam) by an L244A mutation.
    Verras A; Alian A; de Montellano PR
    Protein Eng Des Sel; 2006 Nov; 19(11):491-6. PubMed ID: 16943206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam.
    Nagano S; Shimada H; Tarumi A; Hishiki T; Kimata-Ariga Y; Egawa T; Suematsu M; Park SY; Adachi S; Shiro Y; Ishimura Y
    Biochemistry; 2003 Dec; 42(49):14507-14. PubMed ID: 14661963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site mutations of cytochrome p450cam alter the binding, coupling, and oxidation of the foreign substrates (R)- and (s)-2-ethylhexanol.
    French KJ; Rock DA; Rock DA; Manchester JI; Goldstein BM; Jones JP
    Arch Biochem Biophys; 2002 Feb; 398(2):188-97. PubMed ID: 11831849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of broad specificity P450CAM variants by primary screening against indole as substrate.
    Celik A; Speight RE; Turner NJ
    Chem Commun (Camb); 2005 Aug; (29):3652-4. PubMed ID: 16027900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic activity of cytochrome P450cam towards styrene oxidation is increased by site-specific mutagenesis.
    Nickerson DP; Harford-Cross CF; Fulcher SR; Wong LL
    FEBS Lett; 1997 Mar; 405(2):153-6. PubMed ID: 9089281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidation of naphthalene and pyrene by cytochrome P450cam.
    England PA; Harford-Cross CF; Stevenson JA; Rouch DA; Wong LL
    FEBS Lett; 1998 Mar; 424(3):271-4. PubMed ID: 9539165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system.
    Sevrioukova IF; Poulos TL
    Arch Biochem Biophys; 2011 Mar; 507(1):66-74. PubMed ID: 20816746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putidaredoxin reductase-putidaredoxin-cytochrome p450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system.
    Sibbesen O; De Voss JJ; Montellano PR
    J Biol Chem; 1996 Sep; 271(37):22462-9. PubMed ID: 8798411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering substrate recognition in catalysis by cytochrome P450cam.
    Bell SG; Chen X; Xu F; Rao Z; Wong LL
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):558-62. PubMed ID: 12773156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of two surface residues near the access channel in the substrate recognition by cytochrome P450cam.
    Behera RK; Mazumdar S
    Biophys Chem; 2008 Jun; 135(1-3):1-6. PubMed ID: 18395959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue.
    Yeom H; Sligar SG
    Arch Biochem Biophys; 1997 Jan; 337(2):209-16. PubMed ID: 9016815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.