BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20221567)

  • 1. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform.
    Gallego-Perez D; Higuita-Castro N; Sharma S; Reen RK; Palmer AF; Gooch KJ; Lee LJ; Lannutti JJ; Hansford DJ
    Lab Chip; 2010 Mar; 10(6):775-82. PubMed ID: 20221567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular compartmentalized microfluidic platform: Study of axon-glia interactions.
    Hosmane S; Yang IH; Ruffin A; Thakor N; Venkatesan A
    Lab Chip; 2010 Mar; 10(6):741-7. PubMed ID: 20221562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platform for hepatitis B viral replication study.
    Sodunke TR; Bouchard MJ; Noh HM
    Biomed Microdevices; 2008 Jun; 10(3):393-402. PubMed ID: 18165913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microprinting of liver micro-organ for drug metabolism study.
    Chang RC; Emami K; Jeevarajan A; Wu H; Sun W
    Methods Mol Biol; 2011; 671():219-38. PubMed ID: 20967633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates.
    Khademhosseini A; Ferreira L; Blumling J; Yeh J; Karp JM; Fukuda J; Langer R
    Biomaterials; 2006 Dec; 27(36):5968-77. PubMed ID: 16901537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directing hepatic differentiation of embryonic stem cells with protein microarray-based co-cultures.
    Lee JY; Tuleuova N; Jones CN; Ramanculov E; Zern MA; Revzin A
    Integr Biol (Camb); 2009 Jul; 1(7):460-8. PubMed ID: 20023756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micro-channel-well system for culture and differentiation of embryonic stem cells on different types of substrate.
    Liu L; Luo C; Ni X; Wang L; Yamauchi K; Nomura SM; Nakatsuji N; Chen Y
    Biomed Microdevices; 2010 Jun; 12(3):505-11. PubMed ID: 20177790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective control of liver and kidney cells migration during organotypic cocultures inside fibronectin-coated rectangular silicone microchannels.
    Leclerc E; Baudoin R; Corlu A; Griscom L; Luc Duval J; Legallais C
    Biomaterials; 2007 Apr; 28(10):1820-9. PubMed ID: 17178157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput combinatorial cell co-culture using microfluidics.
    Tumarkin E; Tzadu L; Csaszar E; Seo M; Zhang H; Lee A; Peerani R; Purpura K; Zandstra PW; Kumacheva E
    Integr Biol (Camb); 2011 Jun; 3(6):653-62. PubMed ID: 21526262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicompartmental device for dynamic cell coculture: design, realisation and preliminary results.
    Ciofani G; Migliore A; Raffa V; Menciassi A; Dario P
    J Biosci Bioeng; 2008 May; 105(5):536-44. PubMed ID: 18558346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device.
    Ma H; Liu T; Qin J; Lin B
    Electrophoresis; 2010 May; 31(10):1599-605. PubMed ID: 20414883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.