BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20221567)

  • 21. An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically.
    Liu W; Li L; Wang X; Ren L; Wang X; Wang J; Tu Q; Huang X; Wang J
    Lab Chip; 2010 Jul; 10(13):1717-24. PubMed ID: 20422110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microscale culture of human liver cells for drug development.
    Khetani SR; Bhatia SN
    Nat Biotechnol; 2008 Jan; 26(1):120-6. PubMed ID: 18026090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating in vitro cell-cell interaction using a microfluidic coculture system.
    Wei CW; Cheng JY; Young TH
    Biomed Microdevices; 2006 Mar; 8(1):65-71. PubMed ID: 16491333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic environment for high density hepatocyte culture.
    Zhang MY; Lee PJ; Hung PJ; Johnson T; Lee LP; Mofrad MR
    Biomed Microdevices; 2008 Feb; 10(1):117-21. PubMed ID: 17682945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro/nanoscale technologies for the development of hormone-expressing islet-like cell clusters.
    Gallego-Perez D; Higuita-Castro N; Reen RK; Palacio-Ochoa M; Sharma S; Lee LJ; Lannutti JJ; Hansford DJ; Gooch KJ
    Biomed Microdevices; 2012 Aug; 14(4):779-89. PubMed ID: 22573223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microfluidic cell array with individually addressable culture chambers.
    Wang HY; Bao N; Lu C
    Biosens Bioelectron; 2008 Dec; 24(4):613-7. PubMed ID: 18635348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance.
    Lu HF; Chua KN; Zhang PC; Lim WS; Ramakrishna S; Leong KW; Mao HQ
    Acta Biomater; 2005 Jul; 1(4):399-410. PubMed ID: 16701821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of mass transport in a microchannel bioreactor with cell micropatterning.
    Zeng Y; Lee TS; Yu P; Low HT
    J Biomech Eng; 2008 Jun; 130(3):031018. PubMed ID: 18532867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval.
    Kang E; Choi YY; Jun Y; Chung BG; Lee SH
    Lab Chip; 2010 Oct; 10(20):2651-4. PubMed ID: 20740239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the crosstalk between hepatocytes and endothelial cells using a novel multicompartmental bioreactor: a comparison between connected cultures and cocultures.
    Guzzardi MA; Vozzi F; Ahluwalia AD
    Tissue Eng Part A; 2009 Nov; 15(11):3635-44. PubMed ID: 19496676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening.
    Frimat JP; Sisnaiske J; Subbiah S; Menne H; Godoy P; Lampen P; Leist M; Franzke J; Hengstler JG; van Thriel C; West J
    Lab Chip; 2010 Mar; 10(6):701-9. PubMed ID: 20221557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring.
    Prasad S; Quijano J
    Biosens Bioelectron; 2006 Jan; 21(7):1219-29. PubMed ID: 15990287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues.
    Hong J; deMello AJ; Jayasinghe SN
    Biomed Mater; 2010 Apr; 5(2):21001. PubMed ID: 20234087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis.
    Shah GJ; Ohta AT; Chiou EP; Wu MC; Kim CJ
    Lab Chip; 2009 Jun; 9(12):1732-9. PubMed ID: 19495457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell level co-culture platform for intercellular communication.
    Hong S; Pan Q; Lee LP
    Integr Biol (Camb); 2012 Apr; 4(4):374-80. PubMed ID: 22434268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.