BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20221567)

  • 61. Micromachined electrochemical T-switches for cell sorting applications.
    Ho CT; Lin RZ; Chang HY; Liu CH
    Lab Chip; 2005 Nov; 5(11):1248-58. PubMed ID: 16234948
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microfluidic engineered high cell density three-dimensional neural cultures.
    Cullen DK; Vukasinovic J; Glezer A; Laplaca MC
    J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells.
    Dusseiller MR; Schlaepfer D; Koch M; Kroschewski R; Textor M
    Biomaterials; 2005 Oct; 26(29):5917-25. PubMed ID: 15949557
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices.
    Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M
    Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture.
    Kim MS; Lee W; Kim YC; Park JK
    Biotechnol Bioeng; 2008 Dec; 101(5):1005-13. PubMed ID: 18942775
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrasound-controlled cell aggregation in a multi-well chip.
    Vanherberghen B; Manneberg O; Christakou A; Frisk T; Ohlin M; Hertz HM; Önfelt B; Wiklund M
    Lab Chip; 2010 Oct; 10(20):2727-32. PubMed ID: 20820481
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q; Wu J; Zhang Y; Lin Z; Lin JM
    Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation of coculture system with three extracellular matrices using capillary force lithography and layer-by-layer deposition.
    Takahashi S; Yamazoe H; Sassa F; Suzuki H; Fukuda J
    J Biosci Bioeng; 2009 Dec; 108(6):544-50. PubMed ID: 19914591
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An extracellular matrix microarray for probing cellular differentiation.
    Flaim CJ; Chien S; Bhatia SN
    Nat Methods; 2005 Feb; 2(2):119-25. PubMed ID: 15782209
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass.
    Hanada Y; Sugioka K; Kawano H; Ishikawa IS; Miyawaki A; Midorikawa K
    Biomed Microdevices; 2008 Jun; 10(3):403-10. PubMed ID: 18080201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. nDEP microwells for single-cell patterning in physiological media.
    Mittal N; Rosenthal A; Voldman J
    Lab Chip; 2007 Sep; 7(9):1146-53. PubMed ID: 17713613
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Current application of micro/nano-interfaces to stimulate and analyze cellular responses.
    Cho YK; Shin H; Lee SK; Kim T
    Ann Biomed Eng; 2010 Jun; 38(6):2056-67. PubMed ID: 20213211
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation.
    Sugino H; Ozaki K; Shirasaki Y; Arakawa T; Shoji S; Funatsu T
    Lab Chip; 2009 May; 9(9):1254-60. PubMed ID: 19370245
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An integrated microfluidic platform for magnetic microbeads separation and confinement.
    Ramadan Q; Samper V; Poenar DP; Yu C
    Biosens Bioelectron; 2006 Mar; 21(9):1693-702. PubMed ID: 16203127
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of a microfluidic dispensing system for localised stimulation of cellular networks.
    Kraus T; Verpoorte E; Linder V; Franks W; Hierlemann A; Heer F; Hafizovic S; Fujii T; de Rooij NF; Koster S
    Lab Chip; 2006 Feb; 6(2):218-29. PubMed ID: 16450031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.