BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20221888)

  • 1. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339.
    Heffeter P; Böck K; Atil B; Reza Hoda MA; Körner W; Bartel C; Jungwirth U; Keppler BK; Micksche M; Berger W; Koellensperger G
    J Biol Inorg Chem; 2010 Jun; 15(5):737-48. PubMed ID: 20221888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies.
    Dömötör O; Hartinger CG; Bytzek AK; Kiss T; Keppler BK; Enyedy EA
    J Biol Inorg Chem; 2013 Jan; 18(1):9-17. PubMed ID: 23076343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ascorbic acid on the activity of the investigational anticancer drug KP1019.
    Bartel C; Egger AE; Jakupec MA; Heffeter P; Galanski MS; Berger W; Keppler BK
    J Biol Inorg Chem; 2011 Dec; 16(8):1205-15. PubMed ID: 21706338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum group metallodrug-protein binding studies by capillary electrophoresis - inductively coupled plasma-mass spectrometry: a further insight into the reactivity of a novel antitumor ruthenium(III) complex toward human serum proteins.
    Polec-Pawlak K; Abramski JK; Semenova O; Hartinger CG; Timerbaev AR; Keppler BK; Jarosz M
    Electrophoresis; 2006 Mar; 27(5-6):1128-35. PubMed ID: 16440400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LC- and CZE-ICP-MS approaches for the in vivo analysis of the anticancer drug candidate sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP1339) in mouse plasma.
    Bytzek AK; Boeck K; Hermann G; Hann S; Keppler BK; Hartinger CG; Koellensperger G
    Metallomics; 2011 Oct; 3(10):1049-55. PubMed ID: 21935553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin.
    Groessl M; Zava O; Dyson PJ
    Metallomics; 2011 Jun; 3(6):591-9. PubMed ID: 21399784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years?
    Alessio E; Messori L
    Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells.
    Kapitza S; Pongratz M; Jakupec MA; Heffeter P; Berger W; Lackinger L; Keppler BK; Marian B
    J Cancer Res Clin Oncol; 2005 Feb; 131(2):101-10. PubMed ID: 15503135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339.
    Büchel GE; Kossatz S; Sadique A; Rapta P; Zalibera M; Bucinsky L; Komorovsky S; Telser J; Eppinger J; Reiner T; Arion VB
    Dalton Trans; 2017 Sep; 46(35):11925-11941. PubMed ID: 28850133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the bioavailability of Ru(III) anticancer complexes through hydrophobic albumin interactions.
    Webb MI; Wu B; Jang T; Chard RA; Wong EW; Wong MQ; Yapp DT; Walsby CJ
    Chemistry; 2013 Dec; 19(50):17031-42. PubMed ID: 24203647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactic acid) nanoparticles of the lead anticancer ruthenium compound KP1019 and its surfactant-mediated activation.
    Fischer B; Heffeter P; Kryeziu K; Gille L; Meier SM; Berger W; Kowol CR; Keppler BK
    Dalton Trans; 2014 Jan; 43(3):1096-104. PubMed ID: 24165902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry.
    Alessio E; Messori L
    Molecules; 2019 May; 24(10):. PubMed ID: 31137659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the interactions of an anticancer ruthenium complex in clinical trials with biomolecules utilizing capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry. Short communication.
    Groessl M; Hartinger CG; Połeć-Pawlak K; Jarosz M; Dyson PJ; Keppler BK
    Chem Biodivers; 2008 Aug; 5(8):1609-1614. PubMed ID: 18729095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+ translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA).
    Sadafi FZ; Massai L; Bartolommei G; Moncelli MR; Messori L; Tadini-Buoninsegni F
    ChemMedChem; 2014 Aug; 9(8):1660-4. PubMed ID: 24920093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.
    Heffeter P; Riabtseva A; Senkiv Y; Kowol CR; Körner W; Jungwith U; Mitina N; Keppler BK; Konstantinova T; Yanchuk I; Stoika R; Zaichenko A; Berger W
    J Biomed Nanotechnol; 2014 May; 10(5):877-84. PubMed ID: 24734541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of capillary electrophoresis-inductively coupled plasma mass spectrometry to comparative studying of the reactivity of antitumor ruthenium(III) complexes differing in the nature of counter-ion toward human serum proteins.
    Połeć-Pawlak K; Abramski JK; Ferenc J; Foteeva LS; Timerbaev AR; Keppler BK; Jarosz M
    J Chromatogr A; 2008 May; 1192(2):323-6. PubMed ID: 18433763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.
    Kuhn PS; Büchel GE; Jovanović KK; Filipović L; Radulović S; Rapta P; Arion VB
    Inorg Chem; 2014 Oct; 53(20):11130-9. PubMed ID: 25290960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP.
    Groessl M; Hartinger CG; Dyson PJ; Keppler BK
    J Inorg Biochem; 2008; 102(5-6):1060-5. PubMed ID: 18222004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mass spectrometry in metallodrug development: a case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug.
    Jarosz M; Matczuk M; Pawlak K; Timerbaev AR
    Anal Chim Acta; 2014 Dec; 851():72-7. PubMed ID: 25440667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray Structure Analysis of Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) Bound to Human Serum Albumin Reveals Two Ruthenium Binding Sites and Provides Insights into the Drug Binding Mechanism.
    Bijelic A; Theiner S; Keppler BK; Rompel A
    J Med Chem; 2016 Jun; 59(12):5894-903. PubMed ID: 27196130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.