These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20222000)

  • 41. Isovelocity vs. Isoinertial Sprint Cycling Tests for Power- and Torque-cadence Relationships.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    Int J Sports Med; 2019 Dec; 40(14):897-902. PubMed ID: 31590190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of endurance exercise on muscle force generating capacity of the lower limbs.
    Bentley DJ; Zhou S; Davie AJ
    J Sci Med Sport; 1998 Sep; 1(3):179-88. PubMed ID: 9783519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The critical power concept in all-out isokinetic exercise.
    Dekerle J; Barstow TJ; Regan L; Carter H
    J Sci Med Sport; 2014 Nov; 17(6):640-4. PubMed ID: 24183173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of maximal power output in well-trained cyclists.
    Wackwitz TA; Minahan CL; King T; Du Plessis C; Andrews MH; Bellinger PM
    J Sports Sci; 2021 Jan; 39(1):84-90. PubMed ID: 32787678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement of anaerobic work capacities in humans.
    Green S
    Sports Med; 1995 Jan; 19(1):32-42. PubMed ID: 7740245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the ability of power to predict low frequency lifting capacity.
    Dempsey PG; Ayoub MM; Westfall PH
    Ergonomics; 1998 Aug; 41(8):1222-41. PubMed ID: 9715677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Examination of Fatigue Index and Velocity-Related Force Loss for the Forearm Flexors.
    Carr JC; Beck TW; Ye X; Wages NP
    J Strength Cond Res; 2015 Aug; 29(8):2304-9. PubMed ID: 26203740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2014 Mar; 28(3):592-600. PubMed ID: 24566607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contributions of Lower-Body Strength Parameters to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Wallace BJ; Clasey JL; Bergstrom HC
    J Strength Cond Res; 2021 Jan; 35(1):97-101. PubMed ID: 29489713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The contribution of energy systems during the upper body Wingate anaerobic test.
    Lovell D; Kerr A; Wiegand A; Solomon C; Harvey L; McLellan C
    Appl Physiol Nutr Metab; 2013 Feb; 38(2):216-9. PubMed ID: 23438235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The assessment of human dynamic muscular function: a comparison of isoinertial and isokinetic tests.
    Murphy AJ; Wilson GJ
    J Sports Med Phys Fitness; 1996 Sep; 36(3):169-77. PubMed ID: 8979646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity.
    La Monica MB; Fukuda DH; Starling-Smith TM; Wang R; Hoffman JR; Stout JR
    Respir Physiol Neurobiol; 2018 Feb; 249():1-6. PubMed ID: 29247712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alternative forms of the critical power test for ramp exercise.
    Morton RH
    Ergonomics; 1997 May; 40(5):511-4. PubMed ID: 9149552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Torque-velocity relationship during cycle ergometer sprints with and without toe clips.
    Capmal S; Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):375-9. PubMed ID: 9349655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contributions of Body-Composition Characteristics to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Switalla JR; Eastman JE; Wallace BJ; Clasey JL; Bergstrom HC
    Int J Sports Physiol Perform; 2018 Feb; 13(2):189-193. PubMed ID: 28530517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ventilatory threshold and work efficiency on a bicycle and paddling ergometer in top canoeists.
    Bunc V; Heller J
    J Sports Med Phys Fitness; 1991 Sep; 31(3):376-9. PubMed ID: 1798308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effectiveness of Omura's ST.36 point (True ST.36) needling on the Wingate anaerobic test results of young soccer players.
    Ozerkan KN; Bayraktar B; Yucesir I; Cakir B; Yilddiz F
    Acupunct Electrother Res; 2009; 34(3-4):205-16. PubMed ID: 20344886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Comparative Study Between the Wingate and Force-Velocity Anaerobic Cycling Tests: Effect of Physical Fitness.
    Jaafar H; Rouis M; Attiogbé E; Vandewalle H; Driss T
    Int J Sports Physiol Perform; 2016 Jan; 11(1):48-54. PubMed ID: 25849068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start.
    Vargas NT; Robergs RA; Klopp DM
    Eur J Appl Physiol; 2015 May; 115(5):1087-94. PubMed ID: 25549787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isokinetic cycle ergometer--application in sports medicine.
    Hamar D; Gazovic O; Schickhofer P
    Wien Med Wochenschr; 1995; 145(22):606-10. PubMed ID: 8585215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.