BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20222012)

  • 1. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1.
    Zhang M; Liu J; Kim Y; Dixon JE; Pfaff SL; Gill GN; Noel JP; Zhang Y
    Protein Sci; 2010 May; 19(5):974-86. PubMed ID: 20222012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1.
    Zhang Y; Kim Y; Genoud N; Gao J; Kelly JW; Pfaff SL; Gill GN; Dixon JE; Noel JP
    Mol Cell; 2006 Dec; 24(5):759-770. PubMed ID: 17157258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of RNA polymerase II CTD phosphatases.
    Kamenski T; Heilmeier S; Meinhart A; Cramer P
    Mol Cell; 2004 Aug; 15(3):399-407. PubMed ID: 15304220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases.
    Selengut JD
    Biochemistry; 2001 Oct; 40(42):12704-11. PubMed ID: 11601995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5.
    Yeo M; Lin PS; Dahmus ME; Gill GN
    J Biol Chem; 2003 Jul; 278(28):26078-85. PubMed ID: 12721286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners.
    Kim YJ; Bahk YY
    Biochem Biophys Res Commun; 2014 May; 448(2):189-94. PubMed ID: 24769477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.
    Immormino RM; Starbird CA; Silversmith RE; Bourret RB
    Biochemistry; 2015 Jun; 54(22):3514-27. PubMed ID: 25928369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue.
    Zhang Y; Zhang M; Zhang Y
    Biochem J; 2011 Mar; 434(3):435-44. PubMed ID: 21204787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST).
    Burkholder NT; Mayfield JE; Yu X; Irani S; Arce DK; Jiang F; Matthews WL; Xue Y; Zhang YJ
    J Biol Chem; 2018 Oct; 293(43):16851-16861. PubMed ID: 30217818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5.
    Hausmann S; Shuman S
    J Biol Chem; 2002 Jun; 277(24):21213-20. PubMed ID: 11934898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1.
    R HR; Kim H; Noh K; Kim YJ
    BMB Rep; 2014 Apr; 47(4):192-6. PubMed ID: 24755554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.
    Irani S; Yogesha SD; Mayfield J; Zhang M; Zhang Y; Matthews WL; Nie G; Prescott NA; Zhang YJ
    Sci Signal; 2016 Mar; 9(417):ra24. PubMed ID: 26933063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2C alpha.
    Marley AE; Sullivan JE; Carling D; Abbott WM; Smith GJ; Taylor IW; Carey F; Beri RK
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):801-6. PubMed ID: 9003365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase Fcp1.
    Hausmann S; Shuman S
    J Biol Chem; 2003 Apr; 278(16):13627-32. PubMed ID: 12556522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C.
    Chattopadhyay D; Swingle MR; Salter EA; Wood E; D'Arcy B; Zivanov C; Abney K; Musiyenko A; Rusin SF; Kettenbach A; Yet L; Schroeder CE; Golden JE; Dunham WH; Gingras AC; Banerjee S; Forbes D; Wierzbicki A; Honkanen RE
    Biochem Pharmacol; 2016 Jun; 109():14-26. PubMed ID: 27002182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62.
    Wang W; Liao P; Shen M; Chen T; Chen Y; Li Y; Lin X; Ge X; Wang P
    Oncogene; 2016 Jan; 35(4):491-500. PubMed ID: 25893300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A; Shuman S; Lima CD
    Mol Cell; 2008 Nov; 32(4):478-90. PubMed ID: 19026779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The "catalytic" triad of isocitrate dehydrogenase kinase/phosphatase from E. coli and its relationship with that found in eukaryotic protein kinases.
    Oudot C; Cortay JC; Blanchet C; Laporte DC; Di Pietro A; Cozzone AJ; Jault JM
    Biochemistry; 2001 Mar; 40(10):3047-55. PubMed ID: 11258918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase.
    Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM
    Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.