These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 20222558)
1. Selection of bacterial antagonists for the biological control of Botrytis cinerea in apple (Malus domestica) and in comparison with application of thiabendazole. Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):739-43. PubMed ID: 20222558 [TBL] [Abstract][Full Text] [Related]
2. Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2008; 73(2):249-55. PubMed ID: 19226761 [TBL] [Abstract][Full Text] [Related]
3. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Touré Y; Ongena M; Jacques P; Guiro A; Thonart P J Appl Microbiol; 2004; 96(5):1151-60. PubMed ID: 15078533 [TBL] [Abstract][Full Text] [Related]
4. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea. Achbani EH; Mounir R; Jaafari S; Douira A; Benbouazza ; Jijakli MH Commun Agric Appl Biol Sci; 2005; 70(3):143-9. PubMed ID: 16637169 [TBL] [Abstract][Full Text] [Related]
5. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus). Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):745-8. PubMed ID: 20222559 [TBL] [Abstract][Full Text] [Related]
6. Interaction between Pseudomonas fluorescens isolates and thiabendazole in the control of gray mold of apple. Mikani A; Etebarian HR; Aminian H; Alizadeh A Pak J Biol Sci; 2007 Jul; 10(13):2172-7. PubMed ID: 19070177 [TBL] [Abstract][Full Text] [Related]
7. Effect of incubation temperature and relative humidity on lesion diameter of Botrytis cinerea Pers. and Penicillium expansum Link. on apple fruits. Lahlali R; Friel D; Serrhini MN; Jijakli MH Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1159-66. PubMed ID: 17390873 [TBL] [Abstract][Full Text] [Related]
8. Effect of essential oils in control of plant diseases. Peighami-Ashnaei S; Farzaneh M; Sharifi-Tehrani A; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):843-7. PubMed ID: 20222570 [TBL] [Abstract][Full Text] [Related]
9. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit. Jurick WM; Macarisin O; Gaskins VL; Park E; Yu J; Janisiewicz W; Peter KA Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961 [TBL] [Abstract][Full Text] [Related]
11. Pichia angusta is an effective biocontrol yeast against postharvest decay of apple fruit caused by Botrytis cinerea and Monilia fructicola. Fiori S; Fadda A; Giobbe S; Berardi E; Migheli Q FEMS Yeast Res; 2008 Sep; 8(6):961-3. PubMed ID: 18662318 [TBL] [Abstract][Full Text] [Related]
12. In situ development and application of cDNA-AFLP to isolate genes of Candida oleophila (strain O) potentially involved in antagonistic properties against Botrytis cinerea. Massart S; Luna-Guarda M; Jijakli MH Commun Agric Appl Biol Sci; 2004; 69(4):595-9. PubMed ID: 15756845 [TBL] [Abstract][Full Text] [Related]
13. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950 [TBL] [Abstract][Full Text] [Related]
14. Biological control of apple blue mold with Pseudomonas fluorescens. Etebarian HR; Sholberg PL; Eastwell KC; Sayler RJ Can J Microbiol; 2005 Jul; 51(7):591-8. PubMed ID: 16175208 [TBL] [Abstract][Full Text] [Related]
15. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum. Metz C; Oerke EC; Dehne HW Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):353-9. PubMed ID: 12701443 [TBL] [Abstract][Full Text] [Related]
16. Yeasts as biological agents to control Botrytis cinerea. Santos A; Sánchez A; Marquina D Microbiol Res; 2004; 159(4):331-8. PubMed ID: 15646379 [TBL] [Abstract][Full Text] [Related]
17. [Evaluation of the effects of biological preparations on phytopathogenic fungi Didymella applanata and Botrytis cinerea]. Shpatova TV; Shternshis MV; Beliaev AA Prikl Biokhim Mikrobiol; 2003; 39(1):43-6. PubMed ID: 12625041 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
19. Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. Kürkcüoglu S; Degenhardt J; Lensing J; Al-Masri AN; Gau AE J Exp Bot; 2007; 58(3):733-41. PubMed ID: 17189596 [TBL] [Abstract][Full Text] [Related]
20. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Aly SM; Abdel-Galil Ahmed Y; Abdel-Aziz Ghareeb A; Mohamed MF Fish Shellfish Immunol; 2008 Jul; 25(1-2):128-36. PubMed ID: 18450477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]