These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 20222675)
21. Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes. Chanaewa A; Juárez BH; Weller H; Klinke C Nanoscale; 2012 Jan; 4(1):251-6. PubMed ID: 22080380 [TBL] [Abstract][Full Text] [Related]
22. Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer. Chen C; Xie Y; Ali G; Yoo SH; Cho SO Nanotechnology; 2011 Jan; 22(1):015202. PubMed ID: 21135453 [TBL] [Abstract][Full Text] [Related]
23. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
24. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. Law M; Greene LE; Radenovic A; Kuykendall T; Liphardt J; Yang P J Phys Chem B; 2006 Nov; 110(45):22652-63. PubMed ID: 17092013 [TBL] [Abstract][Full Text] [Related]
25. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Roncali J Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313 [TBL] [Abstract][Full Text] [Related]
26. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Klein C; Nazeeruddin MK; Liska P; Di Censo D; Hirata N; Palomares E; Durrant JR; Grätzel M Inorg Chem; 2005 Jan; 44(2):178-80. PubMed ID: 15651860 [TBL] [Abstract][Full Text] [Related]
27. Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Ong PL; Euler WB; Levitsky IA Nanotechnology; 2010 Mar; 21(10):105203. PubMed ID: 20157233 [TBL] [Abstract][Full Text] [Related]
28. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Choi H; Raabe I; Kim D; Teocoli F; Kim C; Song K; Yum JH; Ko J; Nazeeruddin MK; Grätzel M Chemistry; 2010 Jan; 16(4):1193-201. PubMed ID: 19998435 [TBL] [Abstract][Full Text] [Related]
30. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. Sommeling PM; O'Regan BC; Haswell RR; Smit HJ; Bakker NJ; Smits JJ; Kroon JM; van Roosmalen JA J Phys Chem B; 2006 Oct; 110(39):19191-7. PubMed ID: 17004768 [TBL] [Abstract][Full Text] [Related]
31. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. Ham MH; Paulus GL; Lee CY; Song C; Kalantar-zadeh K; Choi W; Han JH; Strano MS ACS Nano; 2010 Oct; 4(10):6251-9. PubMed ID: 20886891 [TBL] [Abstract][Full Text] [Related]
32. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Li Q; Shang JK Environ Sci Technol; 2009 Dec; 43(23):8923-9. PubMed ID: 19943667 [TBL] [Abstract][Full Text] [Related]
33. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
34. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820 [TBL] [Abstract][Full Text] [Related]
35. Tailored single-walled carbon nanotube--CdS nanoparticle hybrids for tunable optoelectronic devices. Li X; Jia Y; Cao A ACS Nano; 2010 Jan; 4(1):506-12. PubMed ID: 20041712 [TBL] [Abstract][Full Text] [Related]
36. Efficient energy conversion of nanotube/nanowire-based solar cells. Shu Q; Wei J; Wang K; Song S; Guo N; Jia Y; Li Z; Xu Y; Cao A; Zhu H; Wu D Chem Commun (Camb); 2010 Aug; 46(30):5533-5. PubMed ID: 20577694 [TBL] [Abstract][Full Text] [Related]
37. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Klein C; Nazeeruddin MK; Di Censo D; Liska P; Grätzel M Inorg Chem; 2004 Jul; 43(14):4216-26. PubMed ID: 15236533 [TBL] [Abstract][Full Text] [Related]
38. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Capek I Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856 [TBL] [Abstract][Full Text] [Related]
39. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells. Tse CW; Man KY; Cheng KW; Mak CS; Chan WK; Yip CT; Liu ZT; Djurisić AB Chemistry; 2007; 13(1):328-35. PubMed ID: 17013959 [TBL] [Abstract][Full Text] [Related]
40. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. Zhao D; Tang W; Ke L; Tan ST; Sun XW ACS Appl Mater Interfaces; 2010 Mar; 2(3):829-37. PubMed ID: 20356288 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]