BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20222723)

  • 1. Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks.
    Hammond DE; Hyde R; Kratchmarova I; Beynon RJ; Blagoev B; Clague MJ
    J Proteome Res; 2010 May; 9(5):2734-42. PubMed ID: 20222723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphotyrosine profiling of NSCLC cells in response to EGF and HGF reveals network specific mediators of invasion.
    Johnson H; Lescarbeau RS; Gutierrez JA; White FM
    J Proteome Res; 2013 Apr; 12(4):1856-67. PubMed ID: 23438512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics.
    Blagoev B; Ong SE; Kratchmarova I; Mann M
    Nat Biotechnol; 2004 Sep; 22(9):1139-45. PubMed ID: 15314609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphotyrosine Profiling Using SILAC.
    Datta KK; Chatterjee A; Gowda H
    Methods Mol Biol; 2023; 2603():117-125. PubMed ID: 36370274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC).
    Zhang G; Spellman DS; Skolnik EY; Neubert TA
    J Proteome Res; 2006 Mar; 5(3):581-8. PubMed ID: 16512673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling.
    Zhang G; Neubert TA
    J Proteome Res; 2011 Dec; 10(12):5454-62. PubMed ID: 22013880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells.
    Heibeck TH; Ding SJ; Opresko LK; Zhao R; Schepmoes AA; Yang F; Tolmachev AV; Monroe ME; Camp DG; Smith RD; Wiley HS; Qian WJ
    J Proteome Res; 2009 Aug; 8(8):3852-61. PubMed ID: 19534553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines.
    Broncel M; Huang PH
    Methods Mol Biol; 2017; 1636():253-262. PubMed ID: 28730484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters.
    Abe Y; Nagano M; Tada A; Adachi J; Tomonaga T
    J Proteome Res; 2017 Feb; 16(2):1077-1086. PubMed ID: 28152594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.
    Zhang Y; Wolf-Yadlin A; White FM
    Methods Mol Biol; 2007; 359():203-12. PubMed ID: 17484120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells.
    Chen Y; Low TY; Choong LY; Ray RS; Tan YL; Toy W; Lin Q; Ang BK; Wong CH; Lim S; Li B; Hew CL; Sze NS; Druker BJ; Lim YP
    Proteomics; 2007 Jul; 7(14):2384-97. PubMed ID: 17570516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics.
    Stebbing J; Zhang H; Xu Y; Grothey A; Ajuh P; Angelopoulos N; Giamas G
    Mol Cell Proteomics; 2015 Sep; 14(9):2479-92. PubMed ID: 26089344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways.
    Yan GR; Xiao CL; He GW; Yin XF; Chen NP; Cao Y; He QY
    Proteomics; 2010 Mar; 10(5):976-86. PubMed ID: 20049867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing.
    Xu KP; Yu FS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2242-8. PubMed ID: 17460286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells.
    Thelemann A; Petti F; Griffin G; Iwata K; Hunt T; Settinari T; Fenyo D; Gibson N; Haley JD
    Mol Cell Proteomics; 2005 Apr; 4(4):356-76. PubMed ID: 15657067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.
    Reznik TE; Sang Y; Ma Y; Abounader R; Rosen EM; Xia S; Laterra J
    Mol Cancer Res; 2008 Jan; 6(1):139-50. PubMed ID: 18234969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomics finds its timing.
    Johnson SA; Hunter T
    Nat Biotechnol; 2004 Sep; 22(9):1093-4. PubMed ID: 15340474
    [No Abstract]   [Full Text] [Related]  

  • 19. Enrichment of phosphotyrosine proteome of human platelets by immunoprecipitation.
    Foy M; Harney DF; Wynne K; Maguire PB
    Methods Mol Biol; 2007; 357():313-8. PubMed ID: 17172697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells.
    Song L; Turkson J; Karras JG; Jove R; Haura EB
    Oncogene; 2003 Jul; 22(27):4150-65. PubMed ID: 12833138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.