These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 20222738)

  • 1. Target-responsive structural switching for nucleic acid-based sensors.
    Li D; Song S; Fan C
    Acc Chem Res; 2010 May; 43(5):631-41. PubMed ID: 20222738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-triggered polymerization for biosensing.
    Wu Y; Wei W; Liu S
    Acc Chem Res; 2012 Sep; 45(9):1441-50. PubMed ID: 22780874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical sensing of L-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites.
    Liang J; Chen Z; Guo L; Li L
    Chem Commun (Camb); 2011 May; 47(19):5476-8. PubMed ID: 21483916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyte-driven switching of DNA charge transport: de novo creation of electronic sensors for an early lung cancer biomarker.
    Thomas JM; Chakraborty B; Sen D; Yu HZ
    J Am Chem Soc; 2012 Aug; 134(33):13823-33. PubMed ID: 22835075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA electronic switches based on analyte-responsive aptamers.
    Thomas JM; Yu HZ; Sen D
    Methods Mol Biol; 2014; 1103():267-76. PubMed ID: 24318900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
    Cheng AK; Sen D; Yu HZ
    Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.
    Kongpeth J; Jampasa S; Chaumpluk P; Chailapakul O; Vilaivan T
    Talanta; 2016; 146():318-25. PubMed ID: 26695270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.
    Chen J; Tang J; Zhou J; Zhang L; Chen G; Tang D
    Anal Chim Acta; 2014 Jan; 810():10-6. PubMed ID: 24439499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Deoxyribozymes into Colorimetric Sensing Platforms.
    Chang D; Zakaria S; Deng M; Allen N; Tram K; Li Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical aptamer sensor for small molecule assays.
    Liu X; Li W; Xu X; Zhou J; Nie Z
    Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer-based electrochemical approach to the detection of thrombin by modification of gold nanoparticles.
    Li L; Zhao H; Chen Z; Mu X; Guo L
    Anal Bioanal Chem; 2010 Sep; 398(1):563-70. PubMed ID: 20607523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers.
    Wu ZS; Guo MM; Zhang SB; Chen CR; Jiang JH; Shen GL; Yu RQ
    Anal Chem; 2007 Apr; 79(7):2933-9. PubMed ID: 17338505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors.
    Wen Y; Pei H; Wan Y; Su Y; Huang Q; Song S; Fan C
    Anal Chem; 2011 Oct; 83(19):7418-23. PubMed ID: 21853985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.