BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20222800)

  • 1. Molecular mechanisms involved in the progression of myelodysplastic syndrome.
    Nolte F; Hofmann WK
    Future Oncol; 2010 Mar; 6(3):445-55. PubMed ID: 20222800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelodysplastic syndromes: molecular pathogenesis and genomic changes.
    Nolte F; Hofmann WK
    Ann Hematol; 2008 Oct; 87(10):777-95. PubMed ID: 18516602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physician Education: Myelodysplastic Syndrome.
    Yoshida Y
    Oncologist; 1996; 1(4):284-287. PubMed ID: 10388004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations of myelodysplastic syndromes (MDS): An update.
    Ganguly BB; Kadam NN
    Mutat Res Rev Mutat Res; 2016; 769():47-62. PubMed ID: 27543316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of microRNA involvement in genesis of myelodysplastic syndrome and its transformation to acute myeloid leukemia.
    Liao R; Xu Y; Chen M; Chen X; Zhan X; Sun J
    Hematology; 2013 Jul; 18(4):191-7. PubMed ID: 23321417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytogenetics in benzene-associated myelodysplastic syndromes and acute myeloid leukemia: new insights into a disease continuum.
    Irons RD; Kerzic PJ
    Ann N Y Acad Sci; 2014 Mar; 1310():84-8. PubMed ID: 24611724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLT3 internal tandem duplication during myelodysplastic syndrome follow-up: a marker of transformation to acute myeloid leukemia.
    Pinheiro RF; de Sá Moreira E; Silva MR; Alberto FL; Chauffaille Mde L
    Cancer Genet Cytogenet; 2008 Jun; 183(2):89-93. PubMed ID: 18503825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-ras mutation and karyotypic evolution are closely associated with leukemic transformation in myelodysplastic syndrome.
    Horiike S; Misawa S; Nakai H; Kaneko H; Yokota S; Taniwaki M; Yamane Y; Inazawa J; Abe T; Kashima K
    Leukemia; 1994 Aug; 8(8):1331-6. PubMed ID: 8057669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations.
    Harada Y; Harada H
    J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the pathogenesis of myelodysplastic syndromes.
    Delforge M
    Hematol J; 2003; 4(5):303-9. PubMed ID: 14502253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and genetic features of myelodysplastic syndromes.
    Greenberg PL
    Int J Lab Hematol; 2012 Jun; 34(3):215-22. PubMed ID: 22212119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myelodysplastic syndromes: the pediatric point of view.
    Locatelli F; Zecca M; Pession A; Maserati E; De Stefano P; Severi F
    Haematologica; 1995; 80(3):268-79. PubMed ID: 7672722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia.
    Omidvar N; Kogan S; Beurlet S; le Pogam C; Janin A; West R; Noguera ME; Reboul M; Soulie A; Leboeuf C; Setterblad N; Felsher D; Lagasse E; Mohamedali A; Thomas NS; Fenaux P; Fontenay M; Pla M; Mufti GJ; Weissman I; Chomienne C; Padua RA
    Cancer Res; 2007 Dec; 67(24):11657-67. PubMed ID: 18089795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate immune signaling in the myelodysplastic syndromes.
    Starczynowski DT; Karsan A
    Hematol Oncol Clin North Am; 2010 Apr; 24(2):343-59. PubMed ID: 20359630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH.
    Oliveira FM; Lucena-Araujo AR; Favarin Mdo C; Palma PV; Rego EM; Falcão RP; Covas DT; Fontes AM
    Exp Hematol; 2013 Feb; 41(2):198-208. PubMed ID: 23092930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous patterns of CEBPalpha mutation status in the progression of myelodysplastic syndrome and chronic myelomonocytic leukemia to acute myelogenous leukemia.
    Shih LY; Huang CF; Lin TL; Wu JH; Wang PN; Dunn P; Kuo MC; Tang TC
    Clin Cancer Res; 2005 Mar; 11(5):1821-6. PubMed ID: 15756005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.
    Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations.
    Niimi H; Harada H; Harada Y; Ding Y; Imagawa J; Inaba T; Kyo T; Kimura A
    Leukemia; 2006 Apr; 20(4):635-44. PubMed ID: 16467864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and Epigenetic Drug Targets in Myelodysplastic Syndromes.
    Stankov K; Stankov S; Katanic J
    Curr Pharm Des; 2017; 23(1):135-169. PubMed ID: 27697023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia.
    Shih LY; Huang CF; Wang PN; Wu JH; Lin TL; Dunn P; Kuo MC
    Leukemia; 2004 Mar; 18(3):466-75. PubMed ID: 14737077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.