BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20223202)

  • 1. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior.
    Crocker A; Shahidullah M; Levitan IB; Sehgal A
    Neuron; 2010 Mar; 65(5):670-81. PubMed ID: 20223202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine.
    Shang Y; Haynes P; Pírez N; Harrington KI; Guo F; Pollack J; Hong P; Griffith LC; Rosbash M
    Nat Neurosci; 2011 Jun; 14(7):889-95. PubMed ID: 21685918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Octopamine regulates sleep in drosophila through protein kinase A-dependent mechanisms.
    Crocker A; Sehgal A
    J Neurosci; 2008 Sep; 28(38):9377-85. PubMed ID: 18799671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo role of a potassium channel-binding protein in regulating neuronal excitability and behavior.
    Shahidullah M; Reddy S; Fei H; Levitan IB
    J Neurosci; 2009 Oct; 29(42):13328-37. PubMed ID: 19846720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoaminergic modulation of the Na+-activated K+ channel in Kenyon cells isolated from the mushroom body of the cricket (Gryllus bimaculatus) brain.
    Aoki K; Kosakai K; Yoshino M
    J Neurophysiol; 2008 Sep; 100(3):1211-22. PubMed ID: 18550722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between sleep and metabolism in Drosophila with altered octopamine signaling.
    Erion R; DiAngelo JR; Crocker A; Sehgal A
    J Biol Chem; 2012 Sep; 287(39):32406-14. PubMed ID: 22829591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in
    Fernandez-Chiappe F; Hermann-Luibl C; Peteranderl A; Reinhard N; Senthilan PR; Hieke M; Selcho M; Yoshii T; Shafer OT; Muraro NI; Helfrich-Förster C
    J Neurosci; 2020 Dec; 40(50):9617-9633. PubMed ID: 33172977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WIDE AWAKE mediates the circadian timing of sleep onset.
    Liu S; Lamaze A; Liu Q; Tabuchi M; Yang Y; Fowler M; Bharadwaj R; Zhang J; Bedont J; Blackshaw S; Lloyd TE; Montell C; Sehgal A; Koh K; Wu MN
    Neuron; 2014 Apr; 82(1):151-66. PubMed ID: 24631345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the exogenous Drosophila octopamine receptor gene to study Gq-coupled receptor-mediated responses in mammalian neurons.
    Morita M; Susuki J; Amino H; Yoshiki F; Moizumi S; Kudo Y
    Neuroscience; 2006; 137(2):545-53. PubMed ID: 16289891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Sleep Onset by Shal/K
    Feng G; Zhang J; Li M; Shao L; Yang L; Song Q; Ping Y
    J Neurosci; 2018 Oct; 38(42):9059-9071. PubMed ID: 30185460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-field feedback neurons dynamically tune early visual processing.
    Tuthill JC; Nern A; Rubin GM; Reiser MB
    Neuron; 2014 May; 82(4):887-95. PubMed ID: 24853944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP mediates serotonin-induced synaptic enhancement of lateral giant interneuron of the crayfish.
    Araki M; Nagayama T; Sprayberry J
    J Neurophysiol; 2005 Oct; 94(4):2644-52. PubMed ID: 16160094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octopamine modulates activity of neural networks in the honey bee antennal lobe.
    Rein J; Mustard JA; Strauch M; Smith BH; Galizia CG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):947-62. PubMed ID: 23681219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of cyclic AMP formation and nerve electrical activity by octopamine in the terminal abdominal ganglion of the female gypsy moth Lymantria dispar.
    Olianas MC; Solari P; Garau L; Liscia A; Crnjar R; Onali P
    Brain Res; 2006 Feb; 1071(1):63-74. PubMed ID: 16412393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological functions of α2-adrenergic-like octopamine receptor in Drosophila melanogaster.
    Nakagawa H; Maehara S; Kume K; Ohta H; Tomita J
    Genes Brain Behav; 2022 Jul; 21(6):e12807. PubMed ID: 35411674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.
    Ryglewski S; Duch C
    J Neurophysiol; 2009 Dec; 102(6):3673-88. PubMed ID: 19828724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.
    Pooryasin A; Fiala A
    J Neurosci; 2015 Sep; 35(37):12792-812. PubMed ID: 26377467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons from sleeping flies: insights from Drosophila melanogaster on the neuronal circuitry and importance of sleep.
    Potdar S; Sheeba V
    J Neurogenet; 2013 Jun; 27(1-2):23-42. PubMed ID: 23701413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila.
    Guo F; Holla M; Díaz MM; Rosbash M
    Neuron; 2018 Nov; 100(3):624-635.e4. PubMed ID: 30269992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.