These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 20223291)
1. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Turrion-Gomez JL; Eslava AP; Benito EP Fungal Genet Biol; 2010 May; 47(5):484-96. PubMed ID: 20223291 [TBL] [Abstract][Full Text] [Related]
2. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Doehlemann G; Molitor F; Hahn M Fungal Genet Biol; 2005 Jul; 42(7):601-10. PubMed ID: 15950157 [TBL] [Abstract][Full Text] [Related]
3. Protection from nitrosative stress by yeast flavohemoglobin. Liu L; Zeng M; Hausladen A; Heitman J; Stamler JS Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4672-6. PubMed ID: 10758168 [TBL] [Abstract][Full Text] [Related]
4. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
5. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
6. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
7. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
11. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. Noda J; Brito N; González C BMC Plant Biol; 2010 Feb; 10():38. PubMed ID: 20184750 [TBL] [Abstract][Full Text] [Related]
12. Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Del Sorbo G; Ruocco M; Schoonbeek HJ; Scala F; Pane C; Vinale F; De Waard MA Mycol Res; 2008 Jun; 112(Pt 6):737-46. PubMed ID: 18515055 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment. Castillo L; Plaza V; Larrondo LF; Canessa P Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927 [TBL] [Abstract][Full Text] [Related]
14. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486 [TBL] [Abstract][Full Text] [Related]
15. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Viaud M; Fillinger S; Liu W; Polepalli JS; Le Pêcheur P; Kunduru AR; Leroux P; Legendre L Mol Plant Microbe Interact; 2006 Sep; 19(9):1042-50. PubMed ID: 16941908 [TBL] [Abstract][Full Text] [Related]
16. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Nafisi M; Stranne M; Zhang L; van Kan JA; Sakuragi Y Mol Plant Microbe Interact; 2014 Aug; 27(8):781-92. PubMed ID: 24725206 [TBL] [Abstract][Full Text] [Related]
17. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878 [TBL] [Abstract][Full Text] [Related]
18. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
19. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Leroch M; Kleber A; Silva E; Coenen T; Koppenhöfer D; Shmaryahu A; Valenzuela PD; Hahn M Eukaryot Cell; 2013 Apr; 12(4):614-26. PubMed ID: 23417562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]