These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 20223499)
1. Hydroponics as a valid tool to assess arsenic availability in mine soils. Moreno-Jiménez E; Esteban E; Fresno T; de Egea CL; Peñalosa JM Chemosphere; 2010 Apr; 79(5):513-7. PubMed ID: 20223499 [TBL] [Abstract][Full Text] [Related]
2. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related]
3. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
4. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359 [TBL] [Abstract][Full Text] [Related]
5. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
6. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Martínez M; Bernal P; Almela C; Vélez D; García-Agustín P; Serrano R; Navarro-Aviñó J Chemosphere; 2006 Jun; 64(3):478-85. PubMed ID: 16337669 [TBL] [Abstract][Full Text] [Related]
7. Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). De Gregori I; Fuentes E; Olivares D; Pinochet H J Environ Monit; 2004 Jan; 6(1):38-47. PubMed ID: 14737469 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Anawar HM; Garcia-Sanchez A; Santa Regina I Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872 [TBL] [Abstract][Full Text] [Related]
9. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Vázquez S; Carpena RO; Bernal MP Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Boularbah A; Schwartz C; Bitton G; Morel JL Chemosphere; 2006 May; 63(5):802-10. PubMed ID: 16213554 [TBL] [Abstract][Full Text] [Related]
11. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Casado M; Anawar HM; Garcia-Sanchez A; Regina IS Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375 [No Abstract] [Full Text] [Related]
12. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Jiang LY; Yang XE; He ZL Chemosphere; 2004 Jun; 55(9):1179-87. PubMed ID: 15081758 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Melo EE; Costa ET; Guilherme LR; Faquin V; Nascimento CW J Hazard Mater; 2009 Aug; 168(1):479-83. PubMed ID: 19304379 [TBL] [Abstract][Full Text] [Related]
14. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Santos JA; Gonzaga MI; Ma LQ; Srivastava M Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757 [TBL] [Abstract][Full Text] [Related]
15. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia. Sultan K Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097 [TBL] [Abstract][Full Text] [Related]
16. Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. El Hamiani O; El Khalil H; Lounate K; Sirguey C; Hafidi M; Bitton G; Schwartz C; Boularbah A J Hazard Mater; 2010 May; 177(1-3):755-61. PubMed ID: 20074853 [TBL] [Abstract][Full Text] [Related]
17. Toxicity assessment of two soils from Jales mine (Portugal) using plants: growth and biochemical parameters. Loureiro S; Santos C; Pinto G; Costa A; Monteiro M; Nogueira AJ; Soares AM Arch Environ Contam Toxicol; 2006 Feb; 50(2):182-90. PubMed ID: 16307215 [TBL] [Abstract][Full Text] [Related]
18. Comparison of arsenic resistance in Mediterranean woody shrubs used in restoration activities. Moreno-Jiménez E; Peñalosa JM; Carpena-Ruiz RO; Esteban E Chemosphere; 2008 Mar; 71(3):466-73. PubMed ID: 18037471 [TBL] [Abstract][Full Text] [Related]
19. Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. King DJ; Doronila AI; Feenstra C; Baker AJ; Woodrow IE Sci Total Environ; 2008 Nov; 406(1-2):35-42. PubMed ID: 18801558 [TBL] [Abstract][Full Text] [Related]
20. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Caille N; Swanwick S; Zhao FJ; McGrath SP Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]