These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20223740)
1. Scalable biomedical Named Entity Recognition: investigation of a database-supported SVM approach. Habib MS; Kalita J Int J Bioinform Res Appl; 2010; 6(2):191-208. PubMed ID: 20223740 [TBL] [Abstract][Full Text] [Related]
2. Biomedical named entity recognition using two-phase model based on SVMs. Lee KJ; Hwang YS; Kim S; Rim HC J Biomed Inform; 2004 Dec; 37(6):436-47. PubMed ID: 15542017 [TBL] [Abstract][Full Text] [Related]
3. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145 [TBL] [Abstract][Full Text] [Related]
4. A new fuzzy support vectors machine for biomedical data classification. Czajkowska J; Rudzki M; Czajkowski Z Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4676-9. PubMed ID: 19163759 [TBL] [Abstract][Full Text] [Related]
5. Two criteria for model selection in multiclass support vector machines. Wang L; Xue P; Chan KL IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1432-48. PubMed ID: 19022717 [TBL] [Abstract][Full Text] [Related]
6. Posterior probability support vector machines for unbalanced data. Tao Q; Wu GW; Wang FY; Wang J IEEE Trans Neural Netw; 2005 Nov; 16(6):1561-73. PubMed ID: 16342496 [TBL] [Abstract][Full Text] [Related]
7. Vicinal support vector classifier using supervised kernel-based clustering. Yang X; Cao A; Song Q; Schaefer G; Su Y Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294 [TBL] [Abstract][Full Text] [Related]
8. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems. Wang YC; Casasent D Neural Netw; 2008; 21(2-3):502-10. PubMed ID: 18187285 [TBL] [Abstract][Full Text] [Related]
9. Training hard-margin support vector machines using greedy stagewise algorithm. Bo L; Wang L; Jiao L IEEE Trans Neural Netw; 2008 Aug; 19(8):1446-55. PubMed ID: 18701373 [TBL] [Abstract][Full Text] [Related]
10. Combined SVM-CRFs for biological named entity recognition with maximal bidirectional squeezing. Zhu F; Shen B PLoS One; 2012; 7(6):e39230. PubMed ID: 22745720 [TBL] [Abstract][Full Text] [Related]
11. A support vector machine using the lazy learning approach for multi-class classification. Comak E; Arslan A J Med Eng Technol; 2006; 30(2):73-7. PubMed ID: 16531345 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. Tao D; Tang X; Li X; Wu X IEEE Trans Pattern Anal Mach Intell; 2006 Jul; 28(7):1088-99. PubMed ID: 16792098 [TBL] [Abstract][Full Text] [Related]
13. Training the max-margin sequence model with the relaxed slack variables. Niu L; Wu J; Shi Y Neural Netw; 2012 Sep; 33():228-35. PubMed ID: 22717449 [TBL] [Abstract][Full Text] [Related]
14. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. Oyang YJ; Hwang SC; Ou YY; Chen CY; Chen ZW IEEE Trans Neural Netw; 2005 Jan; 16(1):225-36. PubMed ID: 15732402 [TBL] [Abstract][Full Text] [Related]
15. A user's guide to support vector machines. Ben-Hur A; Weston J Methods Mol Biol; 2010; 609():223-39. PubMed ID: 20221922 [TBL] [Abstract][Full Text] [Related]
16. Multiclass relevance vector machines: sparsity and accuracy. Psorakis I; Damoulas T; Girolami MA IEEE Trans Neural Netw; 2010 Oct; 21(10):1588-98. PubMed ID: 20805053 [TBL] [Abstract][Full Text] [Related]
17. Comparison of character-level and part of speech features for name recognition in biomedical texts. Collier N; Takeuchi K J Biomed Inform; 2004 Dec; 37(6):423-35. PubMed ID: 15542016 [TBL] [Abstract][Full Text] [Related]
18. Knowledge discovery via machine learning for neurodegenerative disease researchers. Ozyurt IB; Brown GG Methods Mol Biol; 2009; 569():173-96. PubMed ID: 19623491 [TBL] [Abstract][Full Text] [Related]
19. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Zhang TL; Ding YS Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864 [TBL] [Abstract][Full Text] [Related]
20. A linear-RBF multikernel SVM to classify big text corpora. Romero R; Iglesias EL; Borrajo L Biomed Res Int; 2015; 2015():878291. PubMed ID: 25879039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]