BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20223856)

  • 1. A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals.
    Macqueen DJ; Delbridge ML; Manthri S; Johnston IA
    Mol Biol Evol; 2010 Aug; 27(8):1886-902. PubMed ID: 20223856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of capn1, capn2-like, capn3 and capn11 genes in Atlantic halibut (Hippoglossus hippoglossus L.): Transcriptional regulation across tissues and in skeletal muscle at distinct nutritional states.
    Macqueen DJ; Meischke L; Manthri S; Anwar A; Solberg C; Johnston IA
    Gene; 2010 Mar; 453(1-2):45-58. PubMed ID: 20093171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAPN11: A calpain with high mRNA levels in testis and located on chromosome 6.
    Dear TN; Möller A; Boehm T
    Genomics; 1999 Jul; 59(2):243-7. PubMed ID: 10409436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both the conserved and the unique gene structure of stomach-specific calpains reveal processes of calpain gene evolution.
    Hata S; Nishi K; Kawamoto T; Lee HJ; Kawahara H; Maeda T; Shintani Y; Sorimachi H; Suzuki K
    J Mol Evol; 2001 Sep; 53(3):191-203. PubMed ID: 11523006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution.
    Dear N; Matena K; Vingron M; Boehm T
    Genomics; 1997 Oct; 45(1):175-84. PubMed ID: 9339374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications.
    Kong H; Leebens-Mack J; Ni W; dePamphilis CW; Ma H
    Mol Biol Evol; 2004 Jan; 21(1):117-28. PubMed ID: 14595103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.
    Eckhart L; Ballaun C; Hermann M; VandeBerg JL; Sipos W; Uthman A; Fischer H; Tschachler E
    Mol Biol Evol; 2008 May; 25(5):831-41. PubMed ID: 18281271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene.
    Duret L; Chureau C; Samain S; Weissenbach J; Avner P
    Science; 2006 Jun; 312(5780):1653-5. PubMed ID: 16778056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exon 3 of the growth hormone receptor (GH-R) is specific to eutherian mammals.
    Menzies BR; Shaw G; Fletcher TP; Pask AJ; Renfree MB
    Mol Cell Endocrinol; 2008 Dec; 296(1-2):64-8. PubMed ID: 18706474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Origin and evolution of parasitism in mites of the infraorder Eleutherengona (Acari: Prostigmata). Report I. Lower Raphignathae].
    Bochkov AV
    Parazitologiia; 2008; 42(5):337-59. PubMed ID: 19065835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis.
    Premzl M; Gready JE; Jermiin LS; Simonic T; Marshall Graves JA
    Mol Biol Evol; 2004 Dec; 21(12):2210-31. PubMed ID: 15342797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat.
    Herberger AL; Loretz CA
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Mar; 8(1):86-94. PubMed ID: 23321268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echidna IgA supports mammalian unity and traditional Therian relationship.
    Belov K; Zenger KR; Hellman L; Cooper DW
    Mamm Genome; 2002 Nov; 13(11):656-63. PubMed ID: 12461652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals.
    Saito S; Saito CT; Shingai R
    Gene; 2008 Jan; 408(1-2):37-44. PubMed ID: 18023297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCR gamma chain diversity in the spleen of the duckbill platypus (Ornithorhynchus anatinus).
    Parra ZE; Arnold T; Nowak MA; Hellman L; Miller RD
    Dev Comp Immunol; 2006; 30(8):699-710. PubMed ID: 16303181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.
    Lefèvre CM; Sharp JA; Nicholas KR
    Reprod Fertil Dev; 2009; 21(8):1015-27. PubMed ID: 19874726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.
    Babin PJ
    Gene; 2008 Apr; 413(1-2):76-82. PubMed ID: 18343608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals.
    Glazov EA; McWilliam S; Barris WC; Dalrymple BP
    Mol Biol Evol; 2008 May; 25(5):939-48. PubMed ID: 18281269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.