These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20223912)

  • 1. Visual grading regression: analysing data from visual grading experiments with regression models.
    Smedby O; Fredrikson M
    Br J Radiol; 2010 Sep; 83(993):767-75. PubMed ID: 20223912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual grading characteristics (VGC) analysis: a non-parametric rank-invariant statistical method for image quality evaluation.
    Båth M; Månsson LG
    Br J Radiol; 2007 Mar; 80(951):169-76. PubMed ID: 16854962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiographers' perspectives' on Visual Grading Analysis as a scientific method to evaluate image quality.
    Precht H; Hansson J; Outzen C; Hogg P; Tingberg A
    Radiography (Lond); 2019 Oct; 25 Suppl 1():S14-S18. PubMed ID: 31481182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS.
    Tesselaar E; Dahlström N; Sandborg M
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):340-6. PubMed ID: 26410763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the potential for dose reduction with visual grading regression.
    Smedby O; Fredrikson M; De Geer J; Borgen L; Sandborg M
    Br J Radiol; 2013 Jan; 86(1021):20110784. PubMed ID: 23239690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regression models for analyzing radiological visual grading studies--an empirical comparison.
    Saffari SE; Löve Á; Fredrikson M; Smedby Ö
    BMC Med Imaging; 2015 Oct; 15():49. PubMed ID: 26515510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.
    Hay PD; Smith J; O'Connor RA
    Nucl Med Commun; 2016 Feb; 37(2):155-61. PubMed ID: 26513057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visual grading study for different administered activity levels in bone scintigraphy.
    Gustafsson A; Karlsson H; Nilsson KA; Geijer H; Olsson A
    Clin Physiol Funct Imaging; 2015 May; 35(3):231-6. PubMed ID: 24797289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Measurements Versus Receiver Operating Characteristics and Visual Grading Regression in CT Images Reconstructed with Iterative Reconstruction: A Phantom Study.
    Jensen K; Andersen HK; Smedby Ö; Østerås BH; Aarsnes A; Tingberg A; Fosse E; Martinsen AC
    Acad Radiol; 2018 Apr; 25(4):509-518. PubMed ID: 29198945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EVALUATION OF VGC ANALYZER BY COMPARISON WITH GOLD STANDARD ROC SOFTWARE AND ANALYSIS OF SIMULATED VISUAL GRADING DATA.
    Hansson J; Månsson LG; Båth M
    Radiat Prot Dosimetry; 2021 Oct; 195(3-4):378-390. PubMed ID: 33940628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic imaging--evaluating image quality using visual grading characteristic (VGC) analysis.
    Ludewig E; Richter A; Frame M
    Vet Res Commun; 2010 Jun; 34(5):473-9. PubMed ID: 20461455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal phantom suitable for quality assurance on X-ray imaging modalities.
    Groenewald A; Groenewald WA
    Acta Radiol; 2019 Nov; 60(11):1523-1531. PubMed ID: 30813735
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages.
    Sandborg M; Tingberg A; Ullman G; Dance DR; Alm Carlsson G
    Med Phys; 2006 Nov; 33(11):4169-75. PubMed ID: 17153395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo validation of the Dorfman-Berbaum-Metz method using normalized pseudovalues and less data-based model simplification.
    Hillis SL; Berbaum KS
    Acad Radiol; 2005 Dec; 12(12):1534-41. PubMed ID: 16321742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical approaches to analyse patient-reported outcomes as response variables: an application to health-related quality of life.
    Arostegui I; Núñez-Antón V; Quintana JM
    Stat Methods Med Res; 2012 Apr; 21(2):189-214. PubMed ID: 20858689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordinal regression models for epidemiologic data.
    Armstrong BG; Sloan M
    Am J Epidemiol; 1989 Jan; 129(1):191-204. PubMed ID: 2910061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of ordinal regression models applied on health-related quality of life assessments.
    Lall R; Campbell MJ; Walters SJ; Morgan K
    Stat Methods Med Res; 2002 Feb; 11(1):49-67. PubMed ID: 11923993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of different technique factors on image quality of lumbar spine radiographs as evaluated by established CEC image criteria.
    Almén A; Tingberg A; Mattsson S; Besjakov J; Kheddache S; Lanhede B; Månsson LG; Zankl M
    Br J Radiol; 2000 Nov; 73(875):1192-9. PubMed ID: 11144797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three methods for analysing correlated ROC curves: a comparison in real data sets from multi-reader, multi-case studies with a factorial design.
    Toledano AY
    Stat Med; 2003 Sep; 22(18):2919-33. PubMed ID: 12953288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonparametric signal detectability evaluation using an exponential transformation of the FROC curve.
    Popescu LM
    Med Phys; 2011 Oct; 38(10):5690-702. PubMed ID: 21992384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.