BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20223975)

  • 1. Biochemistry. Remote enzyme microsurgery.
    Bollinger JM; Matthews ML
    Science; 2010 Mar; 327(5971):1337-8. PubMed ID: 20223975
    [No Abstract]   [Full Text] [Related]  

  • 2. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.
    Jensen LM; Sanishvili R; Davidson VL; Wilmot CM
    Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation.
    Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM
    Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of intermediates in tryptophan tryptophylquinone enzymes.
    Davidson VL; Brooks HB; Graichen ME; Jones LH; Hyun YL
    Methods Enzymol; 1995; 258():176-90. PubMed ID: 8524149
    [No Abstract]   [Full Text] [Related]  

  • 6. Methylamine dehydrogenase: structure and function of electron transfer complexes.
    Davidson VL
    Biochem Soc Trans; 1999 Feb; 27(2):201-6. PubMed ID: 10093734
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure and mechanism of tryptophylquinone enzymes.
    Davidson VL
    Bioorg Chem; 2005 Jun; 33(3):159-70. PubMed ID: 15888309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.
    Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL
    FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinoenzymes in biology.
    Klinman JP; Mu D
    Annu Rev Biochem; 1994; 63():299-344. PubMed ID: 7979241
    [No Abstract]   [Full Text] [Related]  

  • 13. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray studies of quinoproteins.
    Mathews FS
    Methods Enzymol; 1995; 258():191-216. PubMed ID: 8524150
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for substrate activation of electron transfer from methylamine dehydrogenase to amicyanin.
    Davidson VL; Sun D
    J Am Chem Soc; 2003 Mar; 125(11):3224-5. PubMed ID: 12630872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus.
    Cavalieri C; Biermann N; Vlasie MD; Einsle O; Merli A; Ferrari D; Rossi GL; Ubbink M
    Biochemistry; 2008 Jun; 47(25):6560-70. PubMed ID: 18512962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan tryptophylquinone in bacterial amine dehydrogenases.
    McIntire WS
    Methods Enzymol; 1995; 258():149-64. PubMed ID: 8524147
    [No Abstract]   [Full Text] [Related]  

  • 20. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Wilmot CM; Davidson VL
    Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.