BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2022406)

  • 21. Endothelial modulation of the ouabain-induced contraction in human placental vessels.
    Sánchez-Ferrer CF; Fernández-Alfonso MS; Ponte A; Casado MA; González R; Rodríguez-Mañas L; Pareja A; Marín J
    Circ Res; 1992 Oct; 71(4):943-50. PubMed ID: 1516165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of NG-monomethyl L-arginine on endothelium-dependent relaxation in arterioles of one-kidney, one clip hypertensive rats.
    Nakamura T; Prewitt RL
    Hypertension; 1991 Jun; 17(6 Pt 2):875-80. PubMed ID: 2045169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial role in ouabain-induced contractions in guinea pig carotid arteries.
    Rodríguez-Mañas L; Pareja A; Sánchez-Ferrer CF; Casado MA; Salaices M; Marín J
    Hypertension; 1992 Nov; 20(5):674-81. PubMed ID: 1358823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries.
    Crawley DE; Liu SF; Evans TW; Barnes PJ
    Br J Pharmacol; 1990 Sep; 101(1):166-70. PubMed ID: 2282458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelium-dependent vasodilation is augmented by angiotensin converting enzyme inhibitors in healthy volunteers.
    Nakamura M; Funakoshi T; Yoshida H; Arakawa N; Suzuki T; Hiramori K
    J Cardiovasc Pharmacol; 1992 Dec; 20(6):949-54. PubMed ID: 1282598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NG-monomethyl-L-arginine and NG-nitro-L-arginine inhibit endothelium-dependent relaxations in human isolated omental arteries.
    Vila J; Esplugues JV; Martinez-Cuesta MA; Martinez-Martinez MC; Aldasoro M; Flor B; Lluch S
    J Pharm Pharmacol; 1991 Dec; 43(12):869-70. PubMed ID: 1687588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pregnancy on endothelium and smooth muscle: their role in reduced adrenergic sensitivity.
    Weiner C; Liu KZ; Thompson L; Herrig J; Chestnut D
    Am J Physiol; 1991 Oct; 261(4 Pt 2):H1275-83. PubMed ID: 1928409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension.
    Dohi Y; Thiel MA; Bühler FR; Lüscher TF
    Hypertension; 1990 Aug; 16(2):170-9. PubMed ID: 2379950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation.
    Gilligan DM; Panza JA; Kilcoyne CM; Waclawiw MA; Casino PR; Quyyumi AA
    Circulation; 1994 Dec; 90(6):2853-8. PubMed ID: 7994830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impairment of pulmonary-artery endothelium-dependent relaxation in chronic obstructive lung disease is not due to dysfunction of endothelial cell membrane receptors nor to L-arginine deficiency.
    Dinh-Xuan AT; Pepke-Zaba J; Butt AY; Cremona G; Higenbottam TW
    Br J Pharmacol; 1993 Jun; 109(2):587-91. PubMed ID: 7689396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative roles of nitric oxide and cyclo-oxygenase and lipoxygenase products of arachidonic acid in the contractile responses of rat renal arcuate arteries.
    Wu XC; Richards NT; Michael J; Johns E
    Br J Pharmacol; 1994 Jun; 112(2):369-76. PubMed ID: 8075854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of inhibition of nitric oxide production in a murine model of splanchnic artery occlusion shock.
    Ma XL; Johnson G; Lefer AM
    Arch Int Pharmacodyn Ther; 1991; 311():89-103. PubMed ID: 1789714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-dependent regulation of coronary tone in the neonatal pig.
    McGowan FX; Davis PJ; del Nido PJ; Sobek M; Allen JW; Downing SE
    Anesth Analg; 1994 Dec; 79(6):1094-101. PubMed ID: 7978431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide is the endothelium-derived relaxing factor in bovine pial arterioles.
    Fischer-Nakielski H; Schrör K
    Stroke; 1990 Dec; 21(12 Suppl):IV46-8. PubMed ID: 2124388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NW-nitro L-arginine benzyl ester, a potent irreversible inhibitor of endothelium dependent relaxation.
    Thomas G; Ramwell PW
    Biochem Biophys Res Commun; 1991 Sep; 179(3):1677-82. PubMed ID: 1930206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postnatal changes in mechanisms mediating acetylcholine-induced relaxation in piglet femoral arteries.
    Støen R; Brubakk AM; Vik T; Lossius K; Jynge P; Karlsson JO
    Pediatr Res; 1997 May; 41(5):702-7. PubMed ID: 9128294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelium-dependent relaxant effect of thrombocytin, a serine proteinase from Bothrops atrox snake venom, on isolated pig coronary arteries.
    Glusa E; Brauns H; Stocker K
    Toxicon; 1991; 29(6):725-32. PubMed ID: 1926173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.