BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20224158)

  • 1. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study.
    Cerviño LI; Pawlicki T; Lawson JD; Jiang SB
    Phys Med Biol; 2010 Apr; 55(7):1863-73. PubMed ID: 20224158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation.
    Wiersma RD; Wen Z; Sadinski M; Farrey K; Yenice KM
    Phys Med Biol; 2010 Jan; 55(2):389-401. PubMed ID: 20019403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical experiences with onboard imager KV images for linear accelerator-based stereotactic radiosurgery and radiotherapy setup.
    Hong LX; Chen CC; Garg M; Yaparpalvi R; Mah D
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):556-61. PubMed ID: 19147020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study.
    D'Souza WD; Naqvi SA; Yu CX
    Phys Med Biol; 2005 Sep; 50(17):4021-33. PubMed ID: 16177527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-guided stereotactic body radiotherapy for lung tumors using BodyLoc with tomotherapy: clinical implementation and set-up accuracy.
    Zhou J; Uhl B; Dewitt K; Young M; Taylor B; Fei DY; Lo YC
    Med Dosim; 2010; 35(1):12-8. PubMed ID: 19931009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of image-guided positioning for frameless intracranial radiosurgery.
    Lamba M; Breneman JC; Warnick RE
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):913-9. PubMed ID: 19327898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a phantom to evaluate the positioning accuracy of patient immobilization systems using thermoplastic mask and polyurethane cradle.
    Inata H; Semba T; Itoh Y; Kuribayashi Y; Murayama S; Nishizaki O; Araki F
    Med Phys; 2012 Jul; 39(7):4219-27. PubMed ID: 22830755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion.
    Agazaryan N; Tenn SE; Desalles AA; Selch MT
    Phys Med Biol; 2008 Mar; 53(6):1715-27. PubMed ID: 18367799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery.
    Kai J; Shiomi H; Sasama T; Sato Y; Inoue T; Tamura S; Inoue T
    Comput Aided Surg; 1998; 3(5):257-63. PubMed ID: 10207650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system.
    Antypas C; Pantelis E
    Phys Med Biol; 2008 Sep; 53(17):4697-718. PubMed ID: 18695294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality assurance of immobilization and target localization systems for frameless stereotactic cranial and extracranial hypofractionated radiotherapy.
    Solberg TD; Medin PM; Mullins J; Li S
    Int J Radiat Oncol Biol Phys; 2008; 71(1 Suppl):S131-5. PubMed ID: 18406912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing sitetrack: continuous patient motion monitoring during stereotactic radiotherapy for the head.
    Saito K; Fujii M; Kajiwara K; Suzuki M
    Neurosurgery; 2009 Feb; 64(2 Suppl):A110-22. PubMed ID: 19165067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of high-resolution radiochromic film dosimetry in verifying a small-field stereotactic radiosurgery plan.
    Lee KY; Fung KK; Kwok CS
    Appl Radiat Isot; 2006 Aug; 64(8):934-9. PubMed ID: 16697649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immobilization system for claustrophobic patients in head-and-neck intensity-modulated radiation therapy.
    Kim S; Akpati HC; Li JG; Liu CR; Amdur RJ; Palta JR
    Int J Radiat Oncol Biol Phys; 2004 Aug; 59(5):1531-9. PubMed ID: 15275741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repositioning accuracy of a commercially available thermoplastic mask system.
    Fuss M; Salter BJ; Cheek D; Sadeghi A; Hevezi JM; Herman TS
    Radiother Oncol; 2004 Jun; 71(3):339-45. PubMed ID: 15172151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality assurance procedures for stereotactic body radiation therapy.
    Galvin JM; Bednarz G
    Int J Radiat Oncol Biol Phys; 2008; 71(1 Suppl):S122-5. PubMed ID: 18406909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study.
    Stoffner R; Augschöll C; Widmann G; Böhler D; Bale R
    Rofo; 2009 Sep; 181(9):851-8. PubMed ID: 19517342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markerless real-time 3-D target region tracking by motion backprojection from projection images.
    Rohlfing T; Denzler J; Grässl C; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1455-68. PubMed ID: 16279082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frame-based immobilization and targeting for stereotactic body radiation therapy.
    Murray B; Forster K; Timmerman R
    Med Dosim; 2007; 32(2):86-91. PubMed ID: 17472887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.