These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 202242)

  • 1. Cerebrovascular and metabolic reactions at the CBF autoregulatory level evoked by electrical stimulation of the cat brain cortex.
    Kovách AG; Dóra E; Gyulai L; Eke A
    Bibl Anat; 1977; (15 Pt 1):371-4. PubMed ID: 202242
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic and vascular volume oscillations in the cat brain cortex.
    Dóra E; Kovách AG
    Acta Physiol Acad Sci Hung; 1981; 57(3):261-75. PubMed ID: 6795898
    [No Abstract]   [Full Text] [Related]  

  • 3. [Organization of the process of autoregulation of cerebral blood flow].
    Mitagvariia NP; Meladze VG; Begiashvili VT
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jun; 70(6):822-8. PubMed ID: 6479365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microvessel reactions and NAD-NADH changes in cat brain cortex during cortical stimulation under normo- and hypercapnic conditions.
    Gyulai L; Dora E; Eke A; Kovach AG
    Bibl Anat; 1977; (15 Pt 1):183-6. PubMed ID: 202240
    [No Abstract]   [Full Text] [Related]  

  • 5. Correlation of intracellular redox states and pH with blood flow in primary and secondary seizure foci.
    Tenny RT; Sharbrough FW; Anderson RE; Sundt TM
    Ann Neurol; 1980 Dec; 8(6):564-73. PubMed ID: 6782936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of proxyphylline and benzopyrones on the cerebrocortical NAD/NADH redox state and reflectance in haemorrhagic shock.
    Dora E; Kovách AG
    Arzneimittelforschung; 1978; 28(5):787-90. PubMed ID: 219868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of microcirculatory, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation.
    Dora E; Tanaka K; Greenberg JH; Gonatas NH; Reivich M
    Ann Neurol; 1986 Jun; 19(6):536-44. PubMed ID: 3729309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cyclic AMP level during an increased blood flow in cat cerebral cortex.
    Vlahov V; Zafirov D
    Acta Physiol Pharmacol Bulg; 1981; 7(2):61-8. PubMed ID: 6274153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrical reactions of cat parietal cortex association neurons to stimulation of the reticular and anterior ventral nuclei of the thalamus].
    Voloshin MIa
    Neirofiziologiia; 1973; 5(4):339-47. PubMed ID: 4360103
    [No Abstract]   [Full Text] [Related]  

  • 10. [The effect of electrical stimulation of premotor and motor zones of the cerebral cortex blood flow in skeletal muscles].
    Orlov VV; Smirnov KA
    Fiziol Zh SSSR Im I M Sechenova; 1968 May; 54(5):562-7. PubMed ID: 5733753
    [No Abstract]   [Full Text] [Related]  

  • 11. Cerebral cortical blood flow response during basal forebrain stimulation in cats.
    Hotta H; Uchida S; Shiba K
    Neuroreport; 2007 May; 18(8):809-12. PubMed ID: 17471071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Central noradrenergic regulation of cerebral blood flow].
    Balueva TV
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jul; 69(7):913-8. PubMed ID: 6680352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The dynamics of changes in the evoked electrical reactions of the brain during elaboration of food-procuring conditioned reflexes to low frequency stimulation of the cerebellar nuclei of cats].
    Fanardzhian VV; Papoian
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1970; 20(1):203-6. PubMed ID: 5448020
    [No Abstract]   [Full Text] [Related]  

  • 14. Reduction of gamma-aminobutyric acid level in the cat cerebral cortex by afferent electrical stimulation.
    Lichtshtein D; Dobkin J
    J Neurochem; 1976 Jan; 26(1):135-9. PubMed ID: 1255164
    [No Abstract]   [Full Text] [Related]  

  • 15. Neural effects on cerebral vessels: alteration of pressure-flow relationship.
    Heistad DD; Busija DW; Marcus ML
    Fed Proc; 1981 Jun; 40(8):2317-21. PubMed ID: 7238912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of evoked responses to direct electrical stimulation of a cortex isolated from subcortical nervous influences].
    Bogoslovskii MM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1968; 18(3):456-62. PubMed ID: 5742565
    [No Abstract]   [Full Text] [Related]  

  • 17. Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism.
    Dóra E
    Acta Physiol Hung; 1985; 66(2):199-211. PubMed ID: 4050463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching.
    Ances BM; Wilson DF; Greenberg JH; Detre JA
    J Cereb Blood Flow Metab; 2001 May; 21(5):511-6. PubMed ID: 11333361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of the electrical stimulation of the nasal mucosa on cortical cerebral blood flow in rabbits.
    Gürelik M; Karadağ O; Polat S; Ozüm U; Aslan A; Gürelik B; Göksel HM
    Neurosci Lett; 2004 Jul; 365(3):210-3. PubMed ID: 15246550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of increased intracranial pressure on evoked responses to sensory stimulation.
    Robinson F
    Electroencephalogr Clin Neurophysiol; 1967 Jul; 23(1):96-7. PubMed ID: 4165625
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.