These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20224223)

  • 1. K+ channels on resting duct cells from rat pancreas.
    Hayashi M; Matsuda H
    J Med Invest; 2009; 56 Suppl():354. PubMed ID: 20224223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions.
    O'Reilly CM; Winpenny JP; Argent BE; Gray MA
    Gastroenterology; 2000 Jun; 118(6):1187-96. PubMed ID: 10833494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells.
    Hayashi M; Wang J; Hede SE; Novak I
    Am J Physiol Cell Physiol; 2012 Jul; 303(2):C151-9. PubMed ID: 22555847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential and bicarbonate secretion in isolated interlobular ducts from guinea-pig pancreas.
    Ishiguro H; Steward MC; Sohma Y; Kubota T; Kitagawa M; Kondo T; Case RM; Hayakawa T; Naruse S
    J Gen Physiol; 2002 Nov; 120(5):617-28. PubMed ID: 12407075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanylin in the human pancreas: a novel luminocrine regulatory pathway of electrolyte secretion via cGMP and CFTR in the ductal system.
    Kulaksiz H; Schmid A; Hönscheid M; Eissele R; Klempnauer J; Cetin Y
    Histochem Cell Biol; 2001 Feb; 115(2):131-45. PubMed ID: 11444148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+) channels in human pancreatic duct epithelium.
    Wang J; Haanes KA; Novak I
    Am J Physiol Cell Physiol; 2013 Apr; 304(7):C673-84. PubMed ID: 23364268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells.
    Zeng W; Lee MG; Yan M; Diaz J; Benjamin I; Marino CR; Kopito R; Freedman S; Cotton C; Muallem S; Thomas P
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C442-55. PubMed ID: 9277342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR functions as a bicarbonate channel in pancreatic duct cells.
    Ishiguro H; Steward MC; Naruse S; Ko SB; Goto H; Case RM; Kondo T; Yamamoto A
    J Gen Physiol; 2009 Mar; 133(3):315-26. PubMed ID: 19204187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of maxi-K+ channels on pancreatic duct cells by cyclic AMP-dependent phosphorylation.
    Gray MA; Greenwell JR; Garton AJ; Argent BE
    J Membr Biol; 1990 May; 115(3):203-15. PubMed ID: 1695685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells.
    Devor DC; Singh AK; Lambert LC; DeLuca A; Frizzell RA; Bridges RJ
    J Gen Physiol; 1999 May; 113(5):743-60. PubMed ID: 10228185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport.
    Novak I; Hede SE; Hansen MR
    Pflugers Arch; 2008 May; 456(2):437-47. PubMed ID: 18057956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.
    Hayashi M; Inagaki A; Novak I; Matsuda H
    Pflugers Arch; 2016 Jul; 468(7):1171-1181. PubMed ID: 26965147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.
    Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbachol activates a K+ channel of very small conductance in the basolateral membrane of rat pancreatic acinar cells.
    Köttgen M; Hoefer A; Kim SJ; Beschorner U; Schreiber R; Hug MJ; Greger R
    Pflugers Arch; 1999 Oct; 438(5):597-603. PubMed ID: 10555555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inwardly rectifying K+ channel in bovine parotid acinar cells: possible involvement of Kir2.1.
    Hayashi M; Komazaki S; Ishikawa T
    J Physiol; 2003 Feb; 547(Pt 1):255-69. PubMed ID: 12562923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium.
    Yamaguchi M; Steward MC; Smallbone K; Sohma Y; Yamamoto A; Ko SB; Kondo T; Ishiguro H
    J Physiol; 2017 Mar; 595(6):1947-1972. PubMed ID: 27995646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Where have all the Na+ channels gone? In search of functional ENaC in exocrine pancreas.
    Novak I; Hansen MR
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):162-8. PubMed ID: 12421547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inwardly rectifying K+ channels in the basolateral membrane of rat pancreatic acini.
    Kim SJ; Kerst G; Schreiber R; Pavenstädt H; Greger R; Hug MJ; Bleich M
    Pflugers Arch; 2000 Dec; 441(2-3):331-40. PubMed ID: 11211121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of potassium and chloride channels in the basolateral membrane of bovine nonpigmented ciliary epithelial cells.
    Edelman JL; Loo DD; Sachs G
    Invest Ophthalmol Vis Sci; 1995 Dec; 36(13):2706-16. PubMed ID: 7499093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion.
    Sørensen JB; Nielsen MS; Gudme CN; Larsen EH; Nielsen R
    Pflugers Arch; 2001 Apr; 442(1):1-11. PubMed ID: 11374055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.