BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20224745)

  • 1. ATP8A1 activity and phosphatidylserine transbilayer movement.
    Soupene E; Kemaladewi DU; Kuypers FA
    J Receptor Ligand Channel Res; 2008; 1():1-10. PubMed ID: 20224745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II).
    Paterson JK; Renkema K; Burden L; Halleck MS; Schlegel RA; Williamson P; Daleke DL
    Biochemistry; 2006 Apr; 45(16):5367-76. PubMed ID: 16618126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration.
    Kato U; Inadome H; Yamamoto M; Emoto K; Kobayashi T; Umeda M
    J Biol Chem; 2013 Feb; 288(7):4922-34. PubMed ID: 23269685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged storage of red blood cells affects aminophospholipid translocase activity.
    Verhoeven AJ; Hilarius PM; Dekkers DW; Lagerberg JW; de Korte D
    Vox Sang; 2006 Oct; 91(3):244-51. PubMed ID: 16958837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia.
    van Dijk MJ; van Oirschot BA; Harrison AN; Recktenwald SM; Qiao M; Stommen A; Cloos AS; Vanderroost J; Terrasi R; Dey K; Bos J; Rab MAE; Bogdanova A; Minetti G; Muccioli GG; Tyteca D; Egée S; Kaestner L; Molday RS; van Beers EJ; van Wijk R
    Am J Hematol; 2023 Dec; 98(12):1877-1887. PubMed ID: 37671681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY; Molday LL; Wang J; Andersen JP; Molday RS
    J Biol Chem; 2019 Apr; 294(17):6809-6821. PubMed ID: 30850395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets.
    Jing W; Yabas M; Bröer A; Coupland L; Gardiner EE; Enders A; Bröer S
    Blood Adv; 2019 Feb; 3(3):219-229. PubMed ID: 30674456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane lipid alterations in hemoglobinopathies.
    Kuypers FA
    Hematology Am Soc Hematol Educ Program; 2007; ():68-73. PubMed ID: 18024611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an erythroid ATP-dependent aminophospholipid transporter.
    Soupene E; Kuypers FA
    Br J Haematol; 2006 May; 133(4):436-8. PubMed ID: 16643453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane phospholipid asymmetry in human thalassemia.
    Kuypers FA; Yuan J; Lewis RA; Snyder LM; Kiefer CR; Bunyaratvej A; Fucharoen S; Ma L; Styles L; de Jong K; Schrier SL
    Blood; 1998 Apr; 91(8):3044-51. PubMed ID: 9531618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalization of Rh polypeptides and the aminophospholipid transporter in dilauroylphosphatidylcholine-induced erythrocyte vesicles.
    Bruckheimer EM; Gillum KD; Schroit AJ
    Biochim Biophys Acta; 1995 Apr; 1235(1):147-54. PubMed ID: 7718602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric distribution of phosphatidylserine is generated in the absence of phospholipid flippases in Saccharomyces cerevisiae.
    Mioka T; Fujimura-Kamada K; Tanaka K
    Microbiologyopen; 2014 Oct; 3(5):803-21. PubMed ID: 25220349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of phosphatidylinositol diphosphate on phospholipid asymmetry in the human erythrocyte membrane.
    Shiffer KA; Rood L; Emerson RK; Kuypers FA
    Biochemistry; 1998 Mar; 37(10):3449-58. PubMed ID: 9521666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological roles of transverse lipid asymmetry of animal membranes.
    Clarke RJ; Hossain KR; Cao K
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183382. PubMed ID: 32511979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase.
    Lee S; Uchida Y; Wang J; Matsudaira T; Nakagawa T; Kishimoto T; Mukai K; Inaba T; Kobayashi T; Molday RS; Taguchi T; Arai H
    EMBO J; 2015 Mar; 34(5):669-88. PubMed ID: 25595798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications.
    Bevers EM; Comfurius P; Zwaal RF
    Lupus; 1996 Oct; 5(5):480-7. PubMed ID: 8902787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid asymmetry in plasma membrane vesicles derived from BHK cells.
    Whatmore JL; Allan D
    Biochim Biophys Acta; 1994 Jun; 1192(1):88-94. PubMed ID: 8204655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-dependent transport of phosphatidylserine analogues in human erythrocytes.
    Smriti ; Nemergut EC; Daleke DL
    Biochemistry; 2007 Feb; 46(8):2249-59. PubMed ID: 17269657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning.
    Levano K; Punia V; Raghunath M; Debata PR; Curcio GM; Mogha A; Purkayastha S; McCloskey D; Fata J; Banerjee P
    J Neurochem; 2012 Jan; 120(2):302-13. PubMed ID: 22007859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.