BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 20225216)

  • 21. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds.
    Probst FA; Fliefel R; Burian E; Probst M; Eddicks M; Cornelsen M; Riedl C; Seitz H; Aszódi A; Schieker M; Otto S
    Sci Rep; 2020 Feb; 10(1):2062. PubMed ID: 32029875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.
    Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L
    Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration.
    Shim JH; Huh JB; Park JY; Jeon YC; Kang SS; Kim JY; Rhie JW; Cho DW
    Tissue Eng Part A; 2013 Feb; 19(3-4):317-28. PubMed ID: 22934667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.
    Sawyer AA; Song SJ; Susanto E; Chuan P; Lam CX; Woodruff MA; Hutmacher DW; Cool SM
    Biomaterials; 2009 May; 30(13):2479-88. PubMed ID: 19162318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histological and structural evaluation of growth hormone and PLGA incorporation in macroporous scaffold of α-tricalcium phosphate cement.
    Tonietto L; Vasquez AF; Dos Santos LA; Weber JB
    J Biomater Appl; 2019 Jan; 33(6):866-875. PubMed ID: 30426862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model.
    Chen S; Lau P; Lei M; Peng J; Tang T; Wang X; Qin L; Kumta SM
    J Tissue Eng Regen Med; 2017 Jan; 11(1):34-43. PubMed ID: 24668843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells.
    Yoon SJ; Park KS; Kim MS; Rhee JM; Khang G; Lee HB
    Tissue Eng; 2007 May; 13(5):1125-33. PubMed ID: 17394384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface.
    Han F; Zhou F; Yang X; Zhao J; Zhao Y; Yuan X
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1344-53. PubMed ID: 25385571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.
    Li J; Jahr H; Zheng W; Ren PG
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation.
    Magri AMP; Fernandes KR; Assis L; Kido HW; Avanzi IR; Medeiros MDC; Granito RN; Braga FJC; Rennó ACM
    Int J Biol Macromol; 2019 Aug; 134():869-881. PubMed ID: 31102678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.
    Lin L; Gao H; Dong Y
    J Mater Sci Mater Med; 2015 Jan; 26(1):5327. PubMed ID: 25577209
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Liu P; Bao T; Sun L; Wang Z; Sun J; Peng W; Gan D; Yin G; Liu P; Zhang WB; Shen J
    Biomater Sci; 2022 Feb; 10(3):781-793. PubMed ID: 34988571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of 3D Printing PLGA Scaffold with BMP-9 and P-15 Peptide Hydrogel and Its Application in the Treatment of Bone Defects in Rabbits.
    Wang X; Chen W; Chen Z; Li Y; Wu K; Song Y
    Contrast Media Mol Imaging; 2022; 2022():1081957. PubMed ID: 35965616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Octacalcium phosphate collagen composite stimulates the expression and activity of osteogenic factors to promote bone regeneration.
    Kouketsu A; Matsui K; Kawai T; Ezoe Y; Yanagisawa T; Yasuda A; Takahashi T; Kamakura S
    J Tissue Eng Regen Med; 2020 Jan; 14(1):99-107. PubMed ID: 31721475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment.
    He F; Li J; Ye J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats.
    Ramalingam S; Al-Rasheed A; ArRejaie A; Nooh N; Al-Kindi M; Al-Hezaimi K
    Odontology; 2016 May; 104(2):199-210. PubMed ID: 26156449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic rhBMP-2 and anti-resorptive agents.
    Yu NY; Gdalevitch M; Murphy CM; Mikulec K; Peacock L; Fitzpatrick J; Cantrill LC; Ruys AJ; Cooper-White JJ; Little DG; Schindeler A
    Eur Cell Mater; 2014 Jan; 27():98-109; discussion 109-111. PubMed ID: 24488823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.