These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 20225454)

  • 1. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.
    Kang MJ; Ji HS; Lee SJ
    Proc Inst Mech Eng H; 2010; 224(1):17-25. PubMed ID: 20225454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube.
    Ji HS; Lee SJ
    Clin Hemorheol Microcirc; 2008; 40(1):19-30. PubMed ID: 18791264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic features and platelet aggregation in a stenosed microchannel.
    Ha H; Lee SJ
    Microvasc Res; 2013 Nov; 90():96-105. PubMed ID: 23994271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation.
    Lee SJ; Ha HJ
    IET Syst Biol; 2013 Apr; 7(2):50-5. PubMed ID: 23847813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery.
    Li H; Fang H; Lin Z; Xu S; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031919. PubMed ID: 15089334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A; Sugii Y; Minamiyama M; Niimi H
    Clin Hemorheol Microcirc; 2003; 29(3-4):445-55. PubMed ID: 14724373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of arterial stenosis and its applications to blood diseases.
    Pralhad RN; Schultz DH
    Math Biosci; 2004 Aug; 190(2):203-20. PubMed ID: 15234617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-layered blood flow in stenosed tubes for different diseases.
    Pralhad RN; Schultz DH
    Biorheology; 1988; 25(5):715-26. PubMed ID: 3252923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.
    Ha H; Nam KH; Lee SJ
    Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of plaque stiffness on deformation and blood flow patterns in models of stenosis.
    Shimizu Y; Ohta M
    Biorheology; 2015; 52(3):171-82. PubMed ID: 26406780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.