These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2022568)

  • 21. Endurance-training-induced cellular adaptations in respiratory muscles.
    Powers SK; Lawler J; Criswell D; Dodd S; Grinton S; Bagby G; Silverman H
    J Appl Physiol (1985); 1990 May; 68(5):2114-8. PubMed ID: 2361913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle.
    Kirwan JP; Costill DL; Flynn MG; Neufer PD; Fink WJ; Morse WM
    Int J Sports Med; 1990 Dec; 11(6):479-83. PubMed ID: 2286488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additive effects of training and high-fat diet on energy metabolism during exercise.
    Simi B; Sempore B; Mayet MH; Favier RJ
    J Appl Physiol (1985); 1991 Jul; 71(1):197-203. PubMed ID: 1917743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endurance training increases FFA oxidation and reduces triacylglycerol utilization in contracting rat soleus.
    Dyck DJ; Miskovic D; Code L; Luiken JJ; Bonen A
    Am J Physiol Endocrinol Metab; 2000 May; 278(5):E778-85. PubMed ID: 10780932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic adaptation to physical training under beta-blockade in the rat. Evidence of a beta 2-adrenergic mechanism in skeletal muscle.
    Ji LL; Lennon DL; Kochan RG; Nagle FJ; Lardy HA
    J Clin Invest; 1986 Sep; 78(3):771-8. PubMed ID: 2875082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.
    Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M
    J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of increased functional load on the activation of satellite cells in the skeletal muscle of adult rats.
    Umnova MM; Seene TP
    Int J Sports Med; 1991 Oct; 12(5):501-4. PubMed ID: 1752721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of endurance training on alkaline protease activities in rat skeletal muscles.
    Salminen A; Komulainen J; Ahomäki E; Kainulainen H; Takala T; Vihko V
    Acta Physiol Scand; 1983 Nov; 119(3):261-5. PubMed ID: 6362335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of ageing and endurance exercise training on alpha-actinin isoforms in rat plantaris muscle.
    Ogura Y; Naito H; Kakigi R; Ichinoseki-Sekine N; Kurosaka M; Yoshihara T; Akema T
    Acta Physiol (Oxf); 2011 Aug; 202(4):683-90. PubMed ID: 21518265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats.
    Gute D; Fraga C; Laughlin MH; Amann JF
    J Appl Physiol (1985); 1996 Aug; 81(2):619-26. PubMed ID: 8872626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging and respiratory muscle metabolic plasticity: effects of endurance training.
    Powers SK; Lawler J; Criswell D; Lieu FK; Martin D
    J Appl Physiol (1985); 1992 Mar; 72(3):1068-73. PubMed ID: 1568962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle and heart antioxidant defences in response to sprint training.
    Atalay M; Seene T; Hänninen O; Sen CK
    Acta Physiol Scand; 1996 Oct; 158(2):129-34. PubMed ID: 8899059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of age and life-long endurance training on the passive mechanical properties of rat skeletal muscle.
    Kovanen V; Suominen H
    Compr Gerontol A; 1988 Feb; 2(1):18-23. PubMed ID: 3197050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training.
    Tiidus PM; Houston ME
    Med Sci Sports Exerc; 1994 Mar; 26(3):354-9. PubMed ID: 8183100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endurance training decreases the alkaline proteolytic activity in mouse skeletal muscles.
    Salminen A; Kihlström M; Kainulainen H; Takala T; Vihko V
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):287-90. PubMed ID: 6376121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation of upper airway muscles to chronic endurance exercise.
    Vincent HK; Shanely RA; Stewart DJ; Demirel HA; Hamilton KL; Ray AD; Michlin C; Farkas GA; Powers SK
    Am J Respir Crit Care Med; 2002 Aug; 166(3):287-93. PubMed ID: 12153959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endurance training-induced increases in expiratory muscle oxidative capacity.
    Grinton S; Powers SK; Lawler J; Criswell D; Dodd S; Edwards W
    Med Sci Sports Exerc; 1992 May; 24(5):551-5. PubMed ID: 1533265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle.
    Powers SK; Criswell D; Lawler J; Ji LL; Martin D; Herb RA; Dudley G
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R375-80. PubMed ID: 8141392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of training on skeletal muscle enzymatic adaptations in normal and diabetic rats.
    Noble EG; Ianuzzo CD
    Am J Physiol; 1985 Oct; 249(4 Pt 1):E360-5. PubMed ID: 2931994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuromuscular adaptations during concurrent strength and endurance training versus strength training.
    Häkkinen K; Alen M; Kraemer WJ; Gorostiaga E; Izquierdo M; Rusko H; Mikkola J; Häkkinen A; Valkeinen H; Kaarakainen E; Romu S; Erola V; Ahtiainen J; Paavolainen L
    Eur J Appl Physiol; 2003 Mar; 89(1):42-52. PubMed ID: 12627304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.