These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2022572)

  • 1. A simple Hill element-nonlinear spring model of muscle contraction biomechanics.
    Schultz AB; Faulkner JA; Kadhiresan VA
    J Appl Physiol (1985); 1991 Feb; 70(2):803-12. PubMed ID: 2022572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic properties of active muscle--on the rebound?
    Monroy JA; Lappin AK; Nishikawa KC
    Exerc Sport Sci Rev; 2007 Oct; 35(4):174-9. PubMed ID: 17921785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-velocity shifts with repetitive isometric and isotonic contractions of canine gastrocnemius in situ.
    Ameredes BT; Brechue WF; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1992 Nov; 73(5):2105-11. PubMed ID: 1474091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the validity of Hill and Huxley muscle-tendon complex models using experimental data obtained from rat m. soleus in situ.
    Lemaire KK; Baan GC; Jaspers RT; van Soest AJ
    J Exp Biol; 2016 Apr; 219(Pt 7):977-87. PubMed ID: 26896546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.
    Mörl F; Siebert T; Häufle D
    Biomech Model Mechanobiol; 2016 Feb; 15(1):245-58. PubMed ID: 26038176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
    Biewener AA; Wakeling JM; Lee SS; Arnold AS
    Integr Comp Biol; 2014 Dec; 54(6):1072-83. PubMed ID: 24928073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle contraction history: modified Hill versus an exponential decay model.
    Ettema GJ; Meijer K
    Biol Cybern; 2000 Dec; 83(6):491-500. PubMed ID: 11130582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rheological motor model for vertebrate skeletal muscle in due consideration of non-linearity.
    Tamura Y; Saito M
    J Biomech; 2002 Sep; 35(9):1273-7. PubMed ID: 12163316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model for isometric and isotonic muscle contractions.
    De Vita R; Grange R; Nardinocchi P; Teresi L
    J Theor Biol; 2017 Jul; 425():1-10. PubMed ID: 28483567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hill-type muscle model with serial damping and eccentric force-velocity relation.
    Haeufle DF; Günther M; Bayer A; Schmitt S
    J Biomech; 2014 Apr; 47(6):1531-6. PubMed ID: 24612719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of muscle maximal shortening velocity by extrapolation of the force-velocity relationship: afterloaded versus isotonic release contractions.
    Bullimore SR; Saunders TJ; Herzog W; MacIntosh BR
    Can J Physiol Pharmacol; 2010 Oct; 88(10):937-48. PubMed ID: 20962893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and work optimization of skeletal muscle as a VAD power source.
    Reichenbach SH; Farrar DJ
    ASAIO J; 1994; 40(3):M359-64. PubMed ID: 8555539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ISOFIT: a model-based method to measure muscle-tendon properties simultaneously.
    Wagner H; Siebert T; Ellerby DJ; Marsh RL; Blickhan R
    Biomech Model Mechanobiol; 2005 Aug; 4(1):10-9. PubMed ID: 15895262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour.
    Kroon M
    Math Med Biol; 2010 Jun; 27(2):129-55. PubMed ID: 19592484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.