BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 20225829)

  • 1. Regulation of redox signaling involving chemical conjugation of protein thiols by nitric oxide and electrophiles.
    Sawa T; Arimoto H; Akaike T
    Bioconjug Chem; 2010 Jul; 21(7):1121-9. PubMed ID: 20225829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein cysteine S-guanylation and electrophilic signal transduction by endogenous nitro-nucleotides.
    Ahmed KA; Sawa T; Akaike T
    Amino Acids; 2011 Jun; 41(1):123-30. PubMed ID: 20213439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange.
    Heo J; Campbell SL
    Biochemistry; 2004 Mar; 43(8):2314-22. PubMed ID: 14979728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein S-nitrosation: biochemistry and characterization of protein thiol-NO interactions as cellular signals.
    Miersch S; Mutus B
    Clin Biochem; 2005 Sep; 38(9):777-91. PubMed ID: 16005861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein S-guanylation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate.
    Sawa T; Zaki MH; Okamoto T; Akuta T; Tokutomi Y; Kim-Mitsuyama S; Ihara H; Kobayashi A; Yamamoto M; Fujii S; Arimoto H; Akaike T
    Nat Chem Biol; 2007 Nov; 3(11):727-35. PubMed ID: 17906641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger.
    Fujii S; Akaike T
    Antioxid Redox Signal; 2013 Oct; 19(11):1236-46. PubMed ID: 23157314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; Frosalí S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and cell signaling: modulation of redox tone and protein modification.
    Landar A; Darley-Usmar VM
    Amino Acids; 2003 Dec; 25(3-4):313-21. PubMed ID: 14661093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein S-nitrosylation: purview and parameters.
    Hess DT; Matsumoto A; Kim SO; Marshall HE; Stamler JS
    Nat Rev Mol Cell Biol; 2005 Feb; 6(2):150-66. PubMed ID: 15688001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols.
    Handy DE; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1207-14. PubMed ID: 16543494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation.
    Padgett CM; Whorton AR
    Arch Biochem Biophys; 1998 Oct; 358(2):232-42. PubMed ID: 9784235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling.
    Brüne B; Lapetina EG
    Genet Eng (N Y); 1995; 17():149-64. PubMed ID: 7540026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation.
    Tsutsuki H; Jung M; Zhang T; Ono K; Ida T; Kunieda K; Ihara H; Akaike T; Sawa T
    Biochem Biophys Res Commun; 2016 Sep; 478(1):7-11. PubMed ID: 27473654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Chemical approaches for trapping protein thiols and their oxidative modification].
    Huang CS; Zhu WP; Xu YF; Qian XH
    Yao Xue Xue Bao; 2012 Mar; 47(3):280-90. PubMed ID: 22645750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications.
    Martínez-Ruiz A; Lamas S
    IUBMB Life; 2009 Feb; 61(2):91-8. PubMed ID: 18979538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form: fluorescent probes of reactive nitrogen species).
    McQuade LE; Lippard SJ
    Curr Opin Chem Biol; 2010 Feb; 14(1):43-9. PubMed ID: 19926519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.