These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 20226063)
1. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. Sather DN; Jovanovic M; Golenberg EM BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063 [TBL] [Abstract][Full Text] [Related]
2. Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism. Pfent C; Pobursky KJ; Sather DN; Golenberg EM Dev Genes Evol; 2005 Mar; 215(3):132-42. PubMed ID: 15660251 [TBL] [Abstract][Full Text] [Related]
3. Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Sather DN; York A; Pobursky KJ; Golenberg EM Planta; 2005 Oct; 222(2):284-92. PubMed ID: 15940462 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide analysis of MADS-box genes and their expression patterns in unisexual flower development in dioecious spinach. Fatima M; Ma X; Zhang J; Ming R Sci Rep; 2024 Aug; 14(1):18635. PubMed ID: 39128921 [TBL] [Abstract][Full Text] [Related]
5. Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Kapoor M; Tsuda S; Tanaka Y; Mayama T; Okuyama Y; Tsuchimoto S; Takatsuji H Plant J; 2002 Oct; 32(1):115-27. PubMed ID: 12366805 [TBL] [Abstract][Full Text] [Related]
6. Gibberellins regulate masculinization through the SpGAI-SpSTM module in dioecious spinach. Zhang YL; Wang LY; Yang Y; Zhao X; Zhu HW; You C; Chen N; Wei SJ; Li SF; Gao WJ Plant J; 2024 Jun; 118(6):1907-1921. PubMed ID: 38491869 [TBL] [Abstract][Full Text] [Related]
7. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. West NW; Golenberg EM New Phytol; 2018 Feb; 217(3):1322-1334. PubMed ID: 29226967 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Liu S; Sun Y; Du X; Xu Q; Wu F; Meng Z Ann Bot; 2013 Nov; 112(7):1239-51. PubMed ID: 23956161 [TBL] [Abstract][Full Text] [Related]
9. Gene Regulatory Network Controlling Flower Development in Spinach ( Ma Y; Fu W; Wan S; Li Y; Mao H; Khalid E; Zhang W; Ming R Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892313 [TBL] [Abstract][Full Text] [Related]
10. Sub-functionalization to ovule development following duplication of a floral organ identity gene. Galimba KD; Di Stilio VS Dev Biol; 2015 Sep; 405(1):158-72. PubMed ID: 26123745 [TBL] [Abstract][Full Text] [Related]
11. Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Ainsworth C; Crossley S; Buchanan-Wollaston V; Thangavelu M; Parker J Plant Cell; 1995 Oct; 7(10):1583-98. PubMed ID: 7580253 [TBL] [Abstract][Full Text] [Related]
12. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163 [TBL] [Abstract][Full Text] [Related]
13. Rice open beak is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. Horigome A; Nagasawa N; Ikeda K; Ito M; Itoh J; Nagato Y Plant J; 2009 Jun; 58(5):724-36. PubMed ID: 19207212 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence. Zhao Y; Zhang T; Broholm SK; Tähtiharju S; Mouhu K; Albert VA; Teeri TH; Elomaa P Plant Physiol; 2016 Sep; 172(1):284-96. PubMed ID: 27382139 [TBL] [Abstract][Full Text] [Related]
15. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Hu Y; Liang W; Yin C; Yang X; Ping B; Li A; Jia R; Chen M; Luo Z; Cai Q; Zhao X; Zhang D; Yuan Z Mol Plant; 2015 Sep; 8(9):1366-84. PubMed ID: 25917758 [TBL] [Abstract][Full Text] [Related]
16. Expression of HtKNOT1, a class I KNOX gene, overlaps cell layers and development compartments of differentiating cells in stems and flowers of Helianthus tuberosus. Michelotti V; Giorgetti L; Geri C; Cionini G; Pugliesi C; Fambrini M Cell Biol Int; 2007 Oct; 31(10):1280-7. PubMed ID: 17490899 [TBL] [Abstract][Full Text] [Related]
17. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Sather DN; Golenberg EM Planta; 2009 Feb; 229(3):507-21. PubMed ID: 19005675 [TBL] [Abstract][Full Text] [Related]
18. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Yun D; Liang W; Dreni L; Yin C; Zhou Z; Kater MM; Zhang D Mol Plant; 2013 May; 6(3):743-56. PubMed ID: 23300256 [TBL] [Abstract][Full Text] [Related]
19. FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number. Huang H; Ma H Plant Cell; 1997 Feb; 9(2):115-34. PubMed ID: 9061945 [TBL] [Abstract][Full Text] [Related]
20. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Motte P; Saedler H; Schwarz-Sommer Z Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]