BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 2022612)

  • 41. Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight.
    Mendis HC; Madzima TF; Queiroux C; Jones KM
    mBio; 2016 Jun; 7(3):. PubMed ID: 27329751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors.
    Jabbouri S; Fellay R; Talmont F; Kamalaprija P; Burger U; Relić B; Promé JC; Broughton WJ
    J Biol Chem; 1995 Sep; 270(39):22968-73. PubMed ID: 7559434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation.
    Finan TM; Hirsch AM; Leigh JA; Johansen E; Kuldau GA; Deegan S; Walker GC; Signer ER
    Cell; 1985 Apr; 40(4):869-77. PubMed ID: 2985267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY.
    Bertram-Drogatz PA; Quester I; Becker A; Pühler A
    Mol Gen Genet; 1998 Feb; 257(4):433-41. PubMed ID: 9529524
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators.
    Reed JW; Glazebrook J; Walker GC
    J Bacteriol; 1991 Jun; 173(12):3789-94. PubMed ID: 1711027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes.
    Finan TM; Kunkel B; De Vos GF; Signer ER
    J Bacteriol; 1986 Jul; 167(1):66-72. PubMed ID: 3013840
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti.
    Glucksmann MA; Reuber TL; Walker GC
    J Bacteriol; 1993 Nov; 175(21):7033-44. PubMed ID: 8226645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules.
    Reuhs BL; Relić B; Forsberg LS; Marie C; Ojanen-Reuhs T; Stephens SB; Wong CH; Jabbouri S; Broughton WJ
    J Bacteriol; 2005 Sep; 187(18):6479-87. PubMed ID: 16159781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rhizobium meliloti nodD genes mediate host-specific activation of nodABC.
    Honma MA; Asomaning M; Ausubel FM
    J Bacteriol; 1990 Feb; 172(2):901-11. PubMed ID: 2298703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti.
    Ozga DA; Lara JC; Leig JA
    Mol Plant Microbe Interact; 1994; 7(6):758-65. PubMed ID: 7873780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257.
    Meinhardt LW; Krishnan HB; Balatti PA; Pueppke SG
    Mol Microbiol; 1993 Jul; 9(1):17-29. PubMed ID: 8412662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules.
    Leigh JA; Lee CC
    J Bacteriol; 1988 Aug; 170(8):3327-32. PubMed ID: 3403505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene.
    Hanin M; Jabbouri S; Quesada-Vincens D; Freiberg C; Perret X; Promé JC; Broughton WJ; Fellay R
    Mol Microbiol; 1997 Jun; 24(6):1119-29. PubMed ID: 9218762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The requirement for exopolysaccharide precedes the requirement for flavolan-binding polysaccharide in nodulation of Leucaena leucocephala by Rhizobium loti.
    Hotter GS; Scott DB
    Arch Microbiol; 1997; 167(2-3):182-6. PubMed ID: 9133327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic characterization of Rhizobium sp. strain TAL1145 that nodulates tree legumes.
    George ML; Young JP; Borthakur D
    Can J Microbiol; 1994 Mar; 40(3):208-15. PubMed ID: 8012908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234.
    Ardissone S; Kobayashi H; Kambara K; Rummel C; Noel KD; Walker GC; Broughton WJ; Deakin WJ
    J Bacteriol; 2011 May; 193(9):2218-28. PubMed ID: 21357487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA.
    Ardissone S; Noel KD; Klement M; Broughton WJ; Deakin WJ
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1513-21. PubMed ID: 22066901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nodule formation in soybeans by exopolysaccharide mutants of Rhizobium fredii USDA 191.
    Ko YH; Gayda R
    J Gen Microbiol; 1990 Jan; 136(1):105-13. PubMed ID: 2351951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes.
    Broughton WJ; Wong CH; Lewin A; Samrey U; Myint H; Meyer H; Dowling DN; Simon R
    J Cell Biol; 1986 Apr; 102(4):1173-82. PubMed ID: 3958042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4'-epimerase.
    Canter Cremers HC; Batley M; Redmond JW; Eydems L; Breedveld MW; Zevehuizen LP; Pees E; Wijffelman CA; Lugtenberg BJ
    J Biol Chem; 1990 Dec; 265(34):21122-7. PubMed ID: 2250016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.