These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 20226228)
1. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Costa RS; Machado D; Rocha I; Ferreira EC Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228 [TBL] [Abstract][Full Text] [Related]
2. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. Costa RS; Machado D; Rocha I; Ferreira EC IET Syst Biol; 2011 May; 5(3):157-63. PubMed ID: 21639589 [TBL] [Abstract][Full Text] [Related]
3. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of rate law approximations in bottom-up kinetic models of metabolism. Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508 [TBL] [Abstract][Full Text] [Related]
5. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566 [TBL] [Abstract][Full Text] [Related]
6. Computational approaches to the topology, stability and dynamics of metabolic networks. Steuer R Phytochemistry; 2007; 68(16-18):2139-51. PubMed ID: 17574639 [TBL] [Abstract][Full Text] [Related]
7. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. Tummler K; Lubitz T; Schelker M; Klipp E FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816 [TBL] [Abstract][Full Text] [Related]
8. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903 [TBL] [Abstract][Full Text] [Related]
9. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. Dräger A; Kronfeld M; Ziller MJ; Supper J; Planatscher H; Magnus JB; Oldiges M; Kohlbacher O; Zell A BMC Syst Biol; 2009 Jan; 3():5. PubMed ID: 19144170 [TBL] [Abstract][Full Text] [Related]
10. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks. Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631 [TBL] [Abstract][Full Text] [Related]
11. Capturing the essence of a metabolic network: a flux balance analysis approach. Murabito E; Simeonidis E; Smallbone K; Swinton J J Theor Biol; 2009 Oct; 260(3):445-52. PubMed ID: 19540851 [TBL] [Abstract][Full Text] [Related]
12. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Hoh CY; Cord-Ruwisch R Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824 [TBL] [Abstract][Full Text] [Related]
13. Renormalization group approach to power-law modeling of complex metabolic networks. Hernández-Bermejo B J Theor Biol; 2010 Aug; 265(3):422-32. PubMed ID: 20447410 [TBL] [Abstract][Full Text] [Related]
14. Reduced models of networks of coupled enzymatic reactions. Kumar A; Josić K J Theor Biol; 2011 Jun; 278(1):87-106. PubMed ID: 21377474 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the differences in metabolic network expansion between prokaryotes and eukaryotes. Tanaka M; Yamada T; Itoh M; Okuda S; Goto S; Kanehisa M Genome Inform; 2006; 17(1):230-9. PubMed ID: 17503372 [TBL] [Abstract][Full Text] [Related]