These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20226388)

  • 21. Kinetic properties of a commercial and a native inoculum for aerobic milk fat degradation.
    Loperena L; Saravia V; Murro D; Ferrari MD; Lareo C
    Bioresour Technol; 2006 Nov; 97(16):2160-5. PubMed ID: 16300941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated anaerobic treatment of dairy industrial wastewater and sludge.
    Passeggi M; López I; Borzacconi L
    Water Sci Technol; 2009; 59(3):501-6. PubMed ID: 19214004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.
    Mockos GR; Smith WA; Loge FJ; Thompson DN
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):211-26. PubMed ID: 18418753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.
    Bengtsson S; Werker A; Welander T
    Water Sci Technol; 2008; 58(2):323-30. PubMed ID: 18701781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.
    Ben Rebah F; Prévost D; Yezza A; Tyagi RD
    Bioresour Technol; 2007 Dec; 98(18):3535-46. PubMed ID: 17336515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pretreatment of pulp mill secondary sludge for high-rate anaerobic conversion to biogas.
    Wood N; Tran H; Master E
    Bioresour Technol; 2009 Dec; 100(23):5729-35. PubMed ID: 19615891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of a commercial inoculum for the aerobic biodegradation of a high fat content dairy wastewater.
    Loperena L; Ferrari MD; Saravia V; Murro D; Lima C; Ferrando L; Fernández A; Lareo C
    Bioresour Technol; 2007 Mar; 98(5):1045-51. PubMed ID: 16790344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system.
    Chakravarty P; Mhaisalkar V; Chakrabarti T
    Bioresour Technol; 2010 Apr; 101(8):2896-9. PubMed ID: 20045314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of PHAs from waster under various C:N ratios.
    Wang YJ; Hua FL; Tsang YF; Chan SY; Sin SN; Chua H; Yu PH; Ren NQ
    Bioresour Technol; 2007 May; 98(8):1690-3. PubMed ID: 16844370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process.
    Yu GH; He PJ; Shao LM
    J Hazard Mater; 2010 Mar; 175(1-3):510-7. PubMed ID: 19896767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].
    Yan Q; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation.
    Nakasaki K; Adachi T
    Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of ozonation to reduce biological sludge production in an industrial wastewater treatment plant.
    Albuquerque JS; Domingos JC; Sant'Anna GL; Dezotti M
    Water Sci Technol; 2008; 58(10):1971-6. PubMed ID: 19039177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.
    Cordova-Rosa SM; Dams RI; Cordova-Rosa EV; Radetski MR; Corrêa AX; Radetski CM
    J Hazard Mater; 2009 May; 164(1):61-6. PubMed ID: 18774223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control.
    Chen Y; Xiao N; Zhao Y; Mu H
    Bioresour Technol; 2012 Jun; 114():349-56. PubMed ID: 22507903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique.
    Hossain Molla A; Fakhru'l-Razi A; Zahangir Alam M
    Water Res; 2004 Nov; 38(19):4143-52. PubMed ID: 15491662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new side stream process for easily degradable industrial waste waters to avoid sludge bulking.
    Wandl G; Matsché N; Bayer H
    Water Sci Technol; 2004; 50(7):229-36. PubMed ID: 15553480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.