These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20226493)

  • 41. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance.
    Erdal UG; Erdal ZK; Randall CW
    Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identifiability of parameters and behaviour of MCMC chains: a case study using the reaction norm model.
    Shariati MM; Korsgaard IR; Sorensen D
    J Anim Breed Genet; 2009 Apr; 126(2):92-102. PubMed ID: 19320765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2006 May; 40(8):1519-30. PubMed ID: 16631226
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distributed state simulation of endogenous processes in biological wastewater treatment.
    Schuler AJ; Jassby D
    Biotechnol Bioeng; 2007 Aug; 97(5):1087-97. PubMed ID: 17216663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents.
    Eschenhagen M; Schuppler M; Röske I
    Water Res; 2003 Jul; 37(13):3224-32. PubMed ID: 14509710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions.
    Pijuan M; Guisasola A; Baeza JA; Carrera J; Casas C; Lafuente J
    J Biotechnol; 2006 May; 123(1):117-26. PubMed ID: 16324760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Practical identifiability of model parameters by combined respirometric-titrimetric measurements.
    Petersen B; Gernaey K; Vanrolleghem PA
    Water Sci Technol; 2001; 43(7):347-55. PubMed ID: 11385867
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).
    Blumensaat F; Keller J
    Water Res; 2005 Jan; 39(1):171-83. PubMed ID: 15607176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular signaling identifiability analysis: a case study.
    Roper RT; Pia Saccomani M; Vicini P
    J Theor Biol; 2010 May; 264(2):528-37. PubMed ID: 20188743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling population dynamics of denitrifying phosphorus accumulating organisms in activated sludge.
    Spagni A; Stante L; Bortone G
    Water Sci Technol; 2002; 46(1-2):323-6. PubMed ID: 12216644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of nitrate reductase enzyme parameters in activated sludge using an extended Kalman filter algorithm.
    Hamilton R; Braun B; Koopman B; Svoronos SA
    Water Res; 2008 Apr; 42(8-9):1889-96. PubMed ID: 18067944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems.
    Zeng RJ; van Loosdrecht MC; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Jan; 81(1):92-105. PubMed ID: 12432585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterizing the biochemical activity of full-scale enhanced biological phosphorus removal systems: A comparison with metabolic models.
    Pijuan M; Oehmen A; Baeza JA; Casas C; Yuan Z
    Biotechnol Bioeng; 2008 Jan; 99(1):170-9. PubMed ID: 17514755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition.
    Jubany I; Baeza JA; Carrera J; Lafuente J
    Water Res; 2005 Nov; 39(18):4574-84. PubMed ID: 16213003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge.
    Schroeder S; Petrovski S; Campbell B; McIlroy S; Seviour R
    FEMS Microbiol Lett; 2009 Aug; 297(2):157-63. PubMed ID: 19548893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Steady-state model-based evaluation of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process.
    Lu H; Wang J; Li S; Chen GH; van Loosdrecht MC; Ekama GA
    Water Res; 2009 Aug; 43(14):3613-21. PubMed ID: 19539343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes.
    Vanrolleghem PA; Sin G; Gernaey KV
    Biotechnol Bioeng; 2004 May; 86(3):277-90. PubMed ID: 15083508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling wastewater transformation in sewers based on ASM3.
    Huisman JL; Gujer W
    Water Sci Technol; 2002; 45(6):51-60. PubMed ID: 11989878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions.
    Flores-Alsina X; Gernaey KV; Jeppsson U
    Water Sci Technol; 2012; 65(8):1496-505. PubMed ID: 22466599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic algorithms for the application of Activated Sludge Model No. 1.
    Kim S; Lee H; Kim J; Kim C; Ko J; Woo H; Kim S
    Water Sci Technol; 2002; 45(4-5):405-11. PubMed ID: 11936660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.